Loading…

Risperidone and haloperidol promote survival of stem cells in the rat hippocampus

Altered neuroplasticity contributes to the pathophysiology of schizophrenia. However, the idea that antipsychotics may act, at least in part, by normalizing neurogenesis has not been consistently supported. Our study seeks to determine whether hippocampal cell proliferation is altered in adult rats...

Full description

Saved in:
Bibliographic Details
Published in:European archives of psychiatry and clinical neuroscience 2010-03, Vol.260 (2), p.151-162
Main Authors: Keilhoff, Gerburg, Grecksch, Gisela, Bernstein, Hans-Gert, Roskoden, Thomas, Becker, Axel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Altered neuroplasticity contributes to the pathophysiology of schizophrenia. However, the idea that antipsychotics may act, at least in part, by normalizing neurogenesis has not been consistently supported. Our study seeks to determine whether hippocampal cell proliferation is altered in adult rats pretreated with ketamine, a validated model of schizophrenia, and whether chronic administration with neuroleptic drugs (haloperidol and risperidone) affect changes of cell genesis/survival. Ketamine per se has no effect on cell proliferation. Its withdrawal, however, significantly induced cell proliferation/survival in the hippocampus. Risperidone and haloperidol supported cell genesis/survival as well. During ketamine withdrawal, however, their application did not affect cell proliferation/survival additionally. TUNEL staining indicated a cell-protective potency of both neuroleptics with respect to a ketamine-induced cell death. As RT-PCR and Western blot revealed that the treatment effects of risperidone and haloperidol seemed to be mediated through activation of VEGF and MMP2. The mRNA expression of NGF, BDNF, and NT3 was unaffected. From the respective receptors, only TrkA was enhanced when ketamine withdrawal was combined with risperidone or haloperidol. Risperidone also induced BCL-2. Ketamine withdrawal has no effect on the expression of VEGF, MMP2, or BCL-2. It activated the expression of BDNF. This effect was normalized by risperidone or haloperidol. The findings indicate a promoting effect of risperidone and haloperidol on survival of young neurons in the hippocampus by enhancing the expression of the anti-apoptotic protein BCL-2 and by activation of VEGF/MMP2, whereby an interference with ketamine and thus a priority role of the NMDA system was not evident.
ISSN:0940-1334
1433-8491
DOI:10.1007/s00406-009-0033-1