Loading…
Nonequilibrium statistics of a reduced model for energy transfer in waves
We study energy transfer in a “resonant duet”—a resonant quartet where symmetries support a reduced subsystem with only 2 degrees of freedom—where one mode is forced by white noise and the other is damped. We consider a physically motivated family of nonlinear damping forms and investigate their eff...
Saved in:
Published in: | Communications on pure and applied mathematics 2007-03, Vol.60 (3), p.439-461 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3997-3e803093c637075be2fc8ee0d4e29eefa94032343bde30fac8051847edc185873 |
---|---|
cites | cdi_FETCH-LOGICAL-c3997-3e803093c637075be2fc8ee0d4e29eefa94032343bde30fac8051847edc185873 |
container_end_page | 461 |
container_issue | 3 |
container_start_page | 439 |
container_title | Communications on pure and applied mathematics |
container_volume | 60 |
creator | DeVille, R. E. Lee Milewski, Paul A. Pignol, Ricardo J. Tabak, Esteban G. Vanden-Eijnden, Eric |
description | We study energy transfer in a “resonant duet”—a resonant quartet where symmetries support a reduced subsystem with only 2 degrees of freedom—where one mode is forced by white noise and the other is damped. We consider a physically motivated family of nonlinear damping forms and investigate their effect on the dynamics of the system. A variety of statistical steady states arise in different parameter regimes, including intermittent bursting phases, states highly constrained by slaving among amplitudes and phases, and Gaussian and non‐Gaussian quasi‐equilibrium regimes. All of this can be understood analytically using asymptotic techniques for stochastic differential equations. © 2006 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/cpa.20157 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214270747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1267705151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3997-3e803093c637075be2fc8ee0d4e29eefa94032343bde30fac8051847edc185873</originalsourceid><addsrcrecordid>eNp1kE1PGzEQhq0KpAboof_AqtQDh4Xxx669xzSiAYECqlL1aDnecWW62Q32bkP-PYZAe-JkjfS8z3heQj4zOGMA_Nxt7BkHVqoPZMKgVgUIxg_IBIBBISoJH8lRSvd5ZFKLCbla9B0-jKENqxjGNU2DHUIagku099TSiM3osKHrvsGW-j5S7DD-3tEh2i55jDR0dGv_Yjohh962CT-9vsfk5_eL5eyyuLmdX82mN4UTdf6PQA0CauEqoUCVK-TeaURoJPIa0dtaguBCilWDArx1GkqmpcLGMV1qJY7Jl713E_uHEdNg7vsxdnml4UzyLJXP0OkecrFPKaI3mxjWNu4MA_NclMlFmZeiMvv1VWiTs63Ph7mQ_ge0lBVXZebO99w2tLh7X2hmd9M3c7FP5Ebx8V_Cxj-mUkKV5tdibsSPpa6W5TdzLZ4ArC2FCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214270747</pqid></control><display><type>article</type><title>Nonequilibrium statistics of a reduced model for energy transfer in waves</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>DeVille, R. E. Lee ; Milewski, Paul A. ; Pignol, Ricardo J. ; Tabak, Esteban G. ; Vanden-Eijnden, Eric</creator><creatorcontrib>DeVille, R. E. Lee ; Milewski, Paul A. ; Pignol, Ricardo J. ; Tabak, Esteban G. ; Vanden-Eijnden, Eric</creatorcontrib><description>We study energy transfer in a “resonant duet”—a resonant quartet where symmetries support a reduced subsystem with only 2 degrees of freedom—where one mode is forced by white noise and the other is damped. We consider a physically motivated family of nonlinear damping forms and investigate their effect on the dynamics of the system. A variety of statistical steady states arise in different parameter regimes, including intermittent bursting phases, states highly constrained by slaving among amplitudes and phases, and Gaussian and non‐Gaussian quasi‐equilibrium regimes. All of this can be understood analytically using asymptotic techniques for stochastic differential equations. © 2006 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.20157</identifier><identifier>CODEN: CPAMAT</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Differential equations ; Energy ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Ordinary differential equations ; Partial differential equations ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistics ; Stochastic analysis ; Stochastic models ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Communications on pure and applied mathematics, 2007-03, Vol.60 (3), p.439-461</ispartof><rights>Copyright © 2006 Wiley Periodicals, Inc.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Mar 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3997-3e803093c637075be2fc8ee0d4e29eefa94032343bde30fac8051847edc185873</citedby><cites>FETCH-LOGICAL-c3997-3e803093c637075be2fc8ee0d4e29eefa94032343bde30fac8051847edc185873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18446275$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DeVille, R. E. Lee</creatorcontrib><creatorcontrib>Milewski, Paul A.</creatorcontrib><creatorcontrib>Pignol, Ricardo J.</creatorcontrib><creatorcontrib>Tabak, Esteban G.</creatorcontrib><creatorcontrib>Vanden-Eijnden, Eric</creatorcontrib><title>Nonequilibrium statistics of a reduced model for energy transfer in waves</title><title>Communications on pure and applied mathematics</title><addtitle>Comm. Pure Appl. Math</addtitle><description>We study energy transfer in a “resonant duet”—a resonant quartet where symmetries support a reduced subsystem with only 2 degrees of freedom—where one mode is forced by white noise and the other is damped. We consider a physically motivated family of nonlinear damping forms and investigate their effect on the dynamics of the system. A variety of statistical steady states arise in different parameter regimes, including intermittent bursting phases, states highly constrained by slaving among amplitudes and phases, and Gaussian and non‐Gaussian quasi‐equilibrium regimes. All of this can be understood analytically using asymptotic techniques for stochastic differential equations. © 2006 Wiley Periodicals, Inc.</description><subject>Differential equations</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic analysis</subject><subject>Stochastic models</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PGzEQhq0KpAboof_AqtQDh4Xxx669xzSiAYECqlL1aDnecWW62Q32bkP-PYZAe-JkjfS8z3heQj4zOGMA_Nxt7BkHVqoPZMKgVgUIxg_IBIBBISoJH8lRSvd5ZFKLCbla9B0-jKENqxjGNU2DHUIagku099TSiM3osKHrvsGW-j5S7DD-3tEh2i55jDR0dGv_Yjohh962CT-9vsfk5_eL5eyyuLmdX82mN4UTdf6PQA0CauEqoUCVK-TeaURoJPIa0dtaguBCilWDArx1GkqmpcLGMV1qJY7Jl713E_uHEdNg7vsxdnml4UzyLJXP0OkecrFPKaI3mxjWNu4MA_NclMlFmZeiMvv1VWiTs63Ph7mQ_ge0lBVXZebO99w2tLh7X2hmd9M3c7FP5Ebx8V_Cxj-mUkKV5tdibsSPpa6W5TdzLZ4ArC2FCA</recordid><startdate>200703</startdate><enddate>200703</enddate><creator>DeVille, R. E. Lee</creator><creator>Milewski, Paul A.</creator><creator>Pignol, Ricardo J.</creator><creator>Tabak, Esteban G.</creator><creator>Vanden-Eijnden, Eric</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>200703</creationdate><title>Nonequilibrium statistics of a reduced model for energy transfer in waves</title><author>DeVille, R. E. Lee ; Milewski, Paul A. ; Pignol, Ricardo J. ; Tabak, Esteban G. ; Vanden-Eijnden, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3997-3e803093c637075be2fc8ee0d4e29eefa94032343bde30fac8051847edc185873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Differential equations</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic analysis</topic><topic>Stochastic models</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeVille, R. E. Lee</creatorcontrib><creatorcontrib>Milewski, Paul A.</creatorcontrib><creatorcontrib>Pignol, Ricardo J.</creatorcontrib><creatorcontrib>Tabak, Esteban G.</creatorcontrib><creatorcontrib>Vanden-Eijnden, Eric</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeVille, R. E. Lee</au><au>Milewski, Paul A.</au><au>Pignol, Ricardo J.</au><au>Tabak, Esteban G.</au><au>Vanden-Eijnden, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium statistics of a reduced model for energy transfer in waves</atitle><jtitle>Communications on pure and applied mathematics</jtitle><addtitle>Comm. Pure Appl. Math</addtitle><date>2007-03</date><risdate>2007</risdate><volume>60</volume><issue>3</issue><spage>439</spage><epage>461</epage><pages>439-461</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><coden>CPAMAT</coden><abstract>We study energy transfer in a “resonant duet”—a resonant quartet where symmetries support a reduced subsystem with only 2 degrees of freedom—where one mode is forced by white noise and the other is damped. We consider a physically motivated family of nonlinear damping forms and investigate their effect on the dynamics of the system. A variety of statistical steady states arise in different parameter regimes, including intermittent bursting phases, states highly constrained by slaving among amplitudes and phases, and Gaussian and non‐Gaussian quasi‐equilibrium regimes. All of this can be understood analytically using asymptotic techniques for stochastic differential equations. © 2006 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/cpa.20157</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3640 |
ispartof | Communications on pure and applied mathematics, 2007-03, Vol.60 (3), p.439-461 |
issn | 0010-3640 1097-0312 |
language | eng |
recordid | cdi_proquest_journals_214270747 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Differential equations Energy Exact sciences and technology Global analysis, analysis on manifolds Mathematical analysis Mathematics Ordinary differential equations Partial differential equations Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Statistics Stochastic analysis Stochastic models Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Nonequilibrium statistics of a reduced model for energy transfer in waves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20statistics%20of%20a%20reduced%20model%20for%20energy%20transfer%20in%20waves&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=DeVille,%20R.%20E.%20Lee&rft.date=2007-03&rft.volume=60&rft.issue=3&rft.spage=439&rft.epage=461&rft.pages=439-461&rft.issn=0010-3640&rft.eissn=1097-0312&rft.coden=CPAMAT&rft_id=info:doi/10.1002/cpa.20157&rft_dat=%3Cproquest_cross%3E1267705151%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3997-3e803093c637075be2fc8ee0d4e29eefa94032343bde30fac8051847edc185873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214270747&rft_id=info:pmid/&rfr_iscdi=true |