Loading…

Nonequilibrium statistics of a reduced model for energy transfer in waves

We study energy transfer in a “resonant duet”—a resonant quartet where symmetries support a reduced subsystem with only 2 degrees of freedom—where one mode is forced by white noise and the other is damped. We consider a physically motivated family of nonlinear damping forms and investigate their eff...

Full description

Saved in:
Bibliographic Details
Published in:Communications on pure and applied mathematics 2007-03, Vol.60 (3), p.439-461
Main Authors: DeVille, R. E. Lee, Milewski, Paul A., Pignol, Ricardo J., Tabak, Esteban G., Vanden-Eijnden, Eric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3997-3e803093c637075be2fc8ee0d4e29eefa94032343bde30fac8051847edc185873
cites cdi_FETCH-LOGICAL-c3997-3e803093c637075be2fc8ee0d4e29eefa94032343bde30fac8051847edc185873
container_end_page 461
container_issue 3
container_start_page 439
container_title Communications on pure and applied mathematics
container_volume 60
creator DeVille, R. E. Lee
Milewski, Paul A.
Pignol, Ricardo J.
Tabak, Esteban G.
Vanden-Eijnden, Eric
description We study energy transfer in a “resonant duet”—a resonant quartet where symmetries support a reduced subsystem with only 2 degrees of freedom—where one mode is forced by white noise and the other is damped. We consider a physically motivated family of nonlinear damping forms and investigate their effect on the dynamics of the system. A variety of statistical steady states arise in different parameter regimes, including intermittent bursting phases, states highly constrained by slaving among amplitudes and phases, and Gaussian and non‐Gaussian quasi‐equilibrium regimes. All of this can be understood analytically using asymptotic techniques for stochastic differential equations. © 2006 Wiley Periodicals, Inc.
doi_str_mv 10.1002/cpa.20157
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214270747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1267705151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3997-3e803093c637075be2fc8ee0d4e29eefa94032343bde30fac8051847edc185873</originalsourceid><addsrcrecordid>eNp1kE1PGzEQhq0KpAboof_AqtQDh4Xxx669xzSiAYECqlL1aDnecWW62Q32bkP-PYZAe-JkjfS8z3heQj4zOGMA_Nxt7BkHVqoPZMKgVgUIxg_IBIBBISoJH8lRSvd5ZFKLCbla9B0-jKENqxjGNU2DHUIagku099TSiM3osKHrvsGW-j5S7DD-3tEh2i55jDR0dGv_Yjohh962CT-9vsfk5_eL5eyyuLmdX82mN4UTdf6PQA0CauEqoUCVK-TeaURoJPIa0dtaguBCilWDArx1GkqmpcLGMV1qJY7Jl713E_uHEdNg7vsxdnml4UzyLJXP0OkecrFPKaI3mxjWNu4MA_NclMlFmZeiMvv1VWiTs63Ph7mQ_ge0lBVXZebO99w2tLh7X2hmd9M3c7FP5Ebx8V_Cxj-mUkKV5tdibsSPpa6W5TdzLZ4ArC2FCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214270747</pqid></control><display><type>article</type><title>Nonequilibrium statistics of a reduced model for energy transfer in waves</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>DeVille, R. E. Lee ; Milewski, Paul A. ; Pignol, Ricardo J. ; Tabak, Esteban G. ; Vanden-Eijnden, Eric</creator><creatorcontrib>DeVille, R. E. Lee ; Milewski, Paul A. ; Pignol, Ricardo J. ; Tabak, Esteban G. ; Vanden-Eijnden, Eric</creatorcontrib><description>We study energy transfer in a “resonant duet”—a resonant quartet where symmetries support a reduced subsystem with only 2 degrees of freedom—where one mode is forced by white noise and the other is damped. We consider a physically motivated family of nonlinear damping forms and investigate their effect on the dynamics of the system. A variety of statistical steady states arise in different parameter regimes, including intermittent bursting phases, states highly constrained by slaving among amplitudes and phases, and Gaussian and non‐Gaussian quasi‐equilibrium regimes. All of this can be understood analytically using asymptotic techniques for stochastic differential equations. © 2006 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.20157</identifier><identifier>CODEN: CPAMAT</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Differential equations ; Energy ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Ordinary differential equations ; Partial differential equations ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistics ; Stochastic analysis ; Stochastic models ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Communications on pure and applied mathematics, 2007-03, Vol.60 (3), p.439-461</ispartof><rights>Copyright © 2006 Wiley Periodicals, Inc.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Mar 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3997-3e803093c637075be2fc8ee0d4e29eefa94032343bde30fac8051847edc185873</citedby><cites>FETCH-LOGICAL-c3997-3e803093c637075be2fc8ee0d4e29eefa94032343bde30fac8051847edc185873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18446275$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DeVille, R. E. Lee</creatorcontrib><creatorcontrib>Milewski, Paul A.</creatorcontrib><creatorcontrib>Pignol, Ricardo J.</creatorcontrib><creatorcontrib>Tabak, Esteban G.</creatorcontrib><creatorcontrib>Vanden-Eijnden, Eric</creatorcontrib><title>Nonequilibrium statistics of a reduced model for energy transfer in waves</title><title>Communications on pure and applied mathematics</title><addtitle>Comm. Pure Appl. Math</addtitle><description>We study energy transfer in a “resonant duet”—a resonant quartet where symmetries support a reduced subsystem with only 2 degrees of freedom—where one mode is forced by white noise and the other is damped. We consider a physically motivated family of nonlinear damping forms and investigate their effect on the dynamics of the system. A variety of statistical steady states arise in different parameter regimes, including intermittent bursting phases, states highly constrained by slaving among amplitudes and phases, and Gaussian and non‐Gaussian quasi‐equilibrium regimes. All of this can be understood analytically using asymptotic techniques for stochastic differential equations. © 2006 Wiley Periodicals, Inc.</description><subject>Differential equations</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic analysis</subject><subject>Stochastic models</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PGzEQhq0KpAboof_AqtQDh4Xxx669xzSiAYECqlL1aDnecWW62Q32bkP-PYZAe-JkjfS8z3heQj4zOGMA_Nxt7BkHVqoPZMKgVgUIxg_IBIBBISoJH8lRSvd5ZFKLCbla9B0-jKENqxjGNU2DHUIagku099TSiM3osKHrvsGW-j5S7DD-3tEh2i55jDR0dGv_Yjohh962CT-9vsfk5_eL5eyyuLmdX82mN4UTdf6PQA0CauEqoUCVK-TeaURoJPIa0dtaguBCilWDArx1GkqmpcLGMV1qJY7Jl713E_uHEdNg7vsxdnml4UzyLJXP0OkecrFPKaI3mxjWNu4MA_NclMlFmZeiMvv1VWiTs63Ph7mQ_ge0lBVXZebO99w2tLh7X2hmd9M3c7FP5Ebx8V_Cxj-mUkKV5tdibsSPpa6W5TdzLZ4ArC2FCA</recordid><startdate>200703</startdate><enddate>200703</enddate><creator>DeVille, R. E. Lee</creator><creator>Milewski, Paul A.</creator><creator>Pignol, Ricardo J.</creator><creator>Tabak, Esteban G.</creator><creator>Vanden-Eijnden, Eric</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>200703</creationdate><title>Nonequilibrium statistics of a reduced model for energy transfer in waves</title><author>DeVille, R. E. Lee ; Milewski, Paul A. ; Pignol, Ricardo J. ; Tabak, Esteban G. ; Vanden-Eijnden, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3997-3e803093c637075be2fc8ee0d4e29eefa94032343bde30fac8051847edc185873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Differential equations</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic analysis</topic><topic>Stochastic models</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeVille, R. E. Lee</creatorcontrib><creatorcontrib>Milewski, Paul A.</creatorcontrib><creatorcontrib>Pignol, Ricardo J.</creatorcontrib><creatorcontrib>Tabak, Esteban G.</creatorcontrib><creatorcontrib>Vanden-Eijnden, Eric</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeVille, R. E. Lee</au><au>Milewski, Paul A.</au><au>Pignol, Ricardo J.</au><au>Tabak, Esteban G.</au><au>Vanden-Eijnden, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium statistics of a reduced model for energy transfer in waves</atitle><jtitle>Communications on pure and applied mathematics</jtitle><addtitle>Comm. Pure Appl. Math</addtitle><date>2007-03</date><risdate>2007</risdate><volume>60</volume><issue>3</issue><spage>439</spage><epage>461</epage><pages>439-461</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><coden>CPAMAT</coden><abstract>We study energy transfer in a “resonant duet”—a resonant quartet where symmetries support a reduced subsystem with only 2 degrees of freedom—where one mode is forced by white noise and the other is damped. We consider a physically motivated family of nonlinear damping forms and investigate their effect on the dynamics of the system. A variety of statistical steady states arise in different parameter regimes, including intermittent bursting phases, states highly constrained by slaving among amplitudes and phases, and Gaussian and non‐Gaussian quasi‐equilibrium regimes. All of this can be understood analytically using asymptotic techniques for stochastic differential equations. © 2006 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/cpa.20157</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3640
ispartof Communications on pure and applied mathematics, 2007-03, Vol.60 (3), p.439-461
issn 0010-3640
1097-0312
language eng
recordid cdi_proquest_journals_214270747
source Wiley-Blackwell Read & Publish Collection
subjects Differential equations
Energy
Exact sciences and technology
Global analysis, analysis on manifolds
Mathematical analysis
Mathematics
Ordinary differential equations
Partial differential equations
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Statistics
Stochastic analysis
Stochastic models
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Nonequilibrium statistics of a reduced model for energy transfer in waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20statistics%20of%20a%20reduced%20model%20for%20energy%20transfer%20in%20waves&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=DeVille,%20R.%20E.%20Lee&rft.date=2007-03&rft.volume=60&rft.issue=3&rft.spage=439&rft.epage=461&rft.pages=439-461&rft.issn=0010-3640&rft.eissn=1097-0312&rft.coden=CPAMAT&rft_id=info:doi/10.1002/cpa.20157&rft_dat=%3Cproquest_cross%3E1267705151%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3997-3e803093c637075be2fc8ee0d4e29eefa94032343bde30fac8051847edc185873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214270747&rft_id=info:pmid/&rfr_iscdi=true