Loading…

On the initial-boundary value problem of the incompressible viscoelastic fluid system

In this paper, we shall establish the local well‐posedness of the initial‐boundary value problem of the viscoelastic fluid system of the Oldroyd model. We shall also prove that the local solutions can be extended globally and that the global solutions decay exponentially fast as time goes to infinit...

Full description

Saved in:
Bibliographic Details
Published in:Communications on pure and applied mathematics 2008-04, Vol.61 (4), p.539-558
Main Authors: Lin, Fanghua, Zhang, Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4309-d5abc07044f8c7465349ef299301f124440fb3a8891bb0d0e8d346b8233af223
cites cdi_FETCH-LOGICAL-c4309-d5abc07044f8c7465349ef299301f124440fb3a8891bb0d0e8d346b8233af223
container_end_page 558
container_issue 4
container_start_page 539
container_title Communications on pure and applied mathematics
container_volume 61
creator Lin, Fanghua
Zhang, Ping
description In this paper, we shall establish the local well‐posedness of the initial‐boundary value problem of the viscoelastic fluid system of the Oldroyd model. We shall also prove that the local solutions can be extended globally and that the global solutions decay exponentially fast as time goes to infinity provided that the initial data are sufficiently close to the equilibrium state. © 2007 Wiley Periodicals, Inc.
doi_str_mv 10.1002/cpa.20219
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214274347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1441973571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4309-d5abc07044f8c7465349ef299301f124440fb3a8891bb0d0e8d346b8233af223</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujiYge_AcbEw8eFqYf7McRiYAJESMYj02328bisovtLsq_t7jIzdNkJs_7zsyL0DWGHgYgfbkRPQIEpyeogyGNQ6CYnKIOAIaQRgzO0YVzK99iltAOep2XQf2uAlOa2ogizKqmzIXdBVtRNCrY2Cor1Dqo9IGS1XpjlXPGj4OtcbJShXC1kYEuGpMHbudqtb5EZ1oUTl0dahctxw_L0TSczSePo-EslIxCGuYDkUmIgTGdyJhFA8pSpUmaUsAaE8YY6IyKJElxlkEOKskpi7KEUCo0IbSLblpbf-Zno1zNV1VjS7-RE8xIzCiLPXTXQtJWzlml-caatX-RY-D7zLjPjP9m5tnbg6FwUhTailIadxQQwARH0X5xv-W-TKF2_xvy0fPwzzlsFcbn831UCPvBo5jGA_72NOF08XI_posZn9IfenyJBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214274347</pqid></control><display><type>article</type><title>On the initial-boundary value problem of the incompressible viscoelastic fluid system</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lin, Fanghua ; Zhang, Ping</creator><creatorcontrib>Lin, Fanghua ; Zhang, Ping</creatorcontrib><description>In this paper, we shall establish the local well‐posedness of the initial‐boundary value problem of the viscoelastic fluid system of the Oldroyd model. We shall also prove that the local solutions can be extended globally and that the global solutions decay exponentially fast as time goes to infinity provided that the initial data are sufficiently close to the equilibrium state. © 2007 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.20219</identifier><identifier>CODEN: CPAMAT</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Differential equations ; Exact sciences and technology ; Fluidity ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use ; Viscoelasticity</subject><ispartof>Communications on pure and applied mathematics, 2008-04, Vol.61 (4), p.539-558</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4309-d5abc07044f8c7465349ef299301f124440fb3a8891bb0d0e8d346b8233af223</citedby><cites>FETCH-LOGICAL-c4309-d5abc07044f8c7465349ef299301f124440fb3a8891bb0d0e8d346b8233af223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20121662$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Fanghua</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><title>On the initial-boundary value problem of the incompressible viscoelastic fluid system</title><title>Communications on pure and applied mathematics</title><addtitle>Comm. Pure Appl. Math</addtitle><description>In this paper, we shall establish the local well‐posedness of the initial‐boundary value problem of the viscoelastic fluid system of the Oldroyd model. We shall also prove that the local solutions can be extended globally and that the global solutions decay exponentially fast as time goes to infinity provided that the initial data are sufficiently close to the equilibrium state. © 2007 Wiley Periodicals, Inc.</description><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Fluidity</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>Viscoelasticity</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEQhhujiYge_AcbEw8eFqYf7McRiYAJESMYj02328bisovtLsq_t7jIzdNkJs_7zsyL0DWGHgYgfbkRPQIEpyeogyGNQ6CYnKIOAIaQRgzO0YVzK99iltAOep2XQf2uAlOa2ogizKqmzIXdBVtRNCrY2Cor1Dqo9IGS1XpjlXPGj4OtcbJShXC1kYEuGpMHbudqtb5EZ1oUTl0dahctxw_L0TSczSePo-EslIxCGuYDkUmIgTGdyJhFA8pSpUmaUsAaE8YY6IyKJElxlkEOKskpi7KEUCo0IbSLblpbf-Zno1zNV1VjS7-RE8xIzCiLPXTXQtJWzlml-caatX-RY-D7zLjPjP9m5tnbg6FwUhTailIadxQQwARH0X5xv-W-TKF2_xvy0fPwzzlsFcbn831UCPvBo5jGA_72NOF08XI_posZn9IfenyJBg</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Lin, Fanghua</creator><creator>Zhang, Ping</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>200804</creationdate><title>On the initial-boundary value problem of the incompressible viscoelastic fluid system</title><author>Lin, Fanghua ; Zhang, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4309-d5abc07044f8c7465349ef299301f124440fb3a8891bb0d0e8d346b8233af223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Fluidity</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Fanghua</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Fanghua</au><au>Zhang, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the initial-boundary value problem of the incompressible viscoelastic fluid system</atitle><jtitle>Communications on pure and applied mathematics</jtitle><addtitle>Comm. Pure Appl. Math</addtitle><date>2008-04</date><risdate>2008</risdate><volume>61</volume><issue>4</issue><spage>539</spage><epage>558</epage><pages>539-558</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><coden>CPAMAT</coden><abstract>In this paper, we shall establish the local well‐posedness of the initial‐boundary value problem of the viscoelastic fluid system of the Oldroyd model. We shall also prove that the local solutions can be extended globally and that the global solutions decay exponentially fast as time goes to infinity provided that the initial data are sufficiently close to the equilibrium state. © 2007 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/cpa.20219</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3640
ispartof Communications on pure and applied mathematics, 2008-04, Vol.61 (4), p.539-558
issn 0010-3640
1097-0312
language eng
recordid cdi_proquest_journals_214274347
source Wiley-Blackwell Read & Publish Collection
subjects Differential equations
Exact sciences and technology
Fluidity
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations
Partial differential equations, boundary value problems
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Sciences and techniques of general use
Viscoelasticity
title On the initial-boundary value problem of the incompressible viscoelastic fluid system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A38%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20initial-boundary%20value%20problem%20of%20the%20incompressible%20viscoelastic%20fluid%20system&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Lin,%20Fanghua&rft.date=2008-04&rft.volume=61&rft.issue=4&rft.spage=539&rft.epage=558&rft.pages=539-558&rft.issn=0010-3640&rft.eissn=1097-0312&rft.coden=CPAMAT&rft_id=info:doi/10.1002/cpa.20219&rft_dat=%3Cproquest_cross%3E1441973571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4309-d5abc07044f8c7465349ef299301f124440fb3a8891bb0d0e8d346b8233af223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214274347&rft_id=info:pmid/&rfr_iscdi=true