Loading…

Hyper-Hermitian Quaternionic Kahler Manifolds

We call a quaternionic Kahler manifold with nonzero scalar curvature, whose quaternionic structure is trivialized by a hypercomplex structure, a hyper-Hermitian quaternionic Kahler manifold. We prove that every locally symmetric hyper-Hermitian quaternionic Kahler manifold is locally isometric to th...

Full description

Saved in:
Bibliographic Details
Published in:Annals of global analysis and geometry 2002-08, Vol.22 (1), p.75
Main Author: Alexandrov, Bogdan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page 75
container_title Annals of global analysis and geometry
container_volume 22
creator Alexandrov, Bogdan
description We call a quaternionic Kahler manifold with nonzero scalar curvature, whose quaternionic structure is trivialized by a hypercomplex structure, a hyper-Hermitian quaternionic Kahler manifold. We prove that every locally symmetric hyper-Hermitian quaternionic Kahler manifold is locally isometric to the quaternionic projective space or to the quaternionic hyperbolic space. We describe locally the hyper-Hermitian quaternionic Kahler manifolds with closed Lee form and show that the only complete simply connected such manifold is the quaternionic hyperbolic space. [PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1016240817597
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_214363587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>338584111</sourcerecordid><originalsourceid>FETCH-LOGICAL-p180t-7bae132c7924a04bc07b24e61f4bfd5a6b0a725e6cb70ebe074acc6a88dd54c23</originalsourceid><addsrcrecordid>eNotjT1LxEAUABdRMJ7WtsF-9b39eondcagRT0RQsDvebjaYIyZxkxT-ew-0mmaYEeIS4RpB6Zv1LQI6ZaBAsiUdiQwtKVmCg2ORHQwlCczHqTibpj0AWI2YCVn9jDHJKqavdm65z18XnmPq26FvQ_7En11M-TP3bTN09XQuThrupnjxz5V4v79721Ry-_LwuFlv5YgFzJI8R9QqUKkMg_EByCsTHTbGN7Vl54FJ2eiCJ4g-AhkOwXFR1LU1QemVuPrrjmn4XuI07_bDkvrDcqfQaKdtQfoXY8JEnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214363587</pqid></control><display><type>article</type><title>Hyper-Hermitian Quaternionic Kahler Manifolds</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Alexandrov, Bogdan</creator><creatorcontrib>Alexandrov, Bogdan</creatorcontrib><description>We call a quaternionic Kahler manifold with nonzero scalar curvature, whose quaternionic structure is trivialized by a hypercomplex structure, a hyper-Hermitian quaternionic Kahler manifold. We prove that every locally symmetric hyper-Hermitian quaternionic Kahler manifold is locally isometric to the quaternionic projective space or to the quaternionic hyperbolic space. We describe locally the hyper-Hermitian quaternionic Kahler manifolds with closed Lee form and show that the only complete simply connected such manifold is the quaternionic hyperbolic space. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1023/A:1016240817597</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Eigenvalues ; Geometry ; Mathematics ; Theory</subject><ispartof>Annals of global analysis and geometry, 2002-08, Vol.22 (1), p.75</ispartof><rights>Copyright Kluwer Academic Publishers Aug 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/214363587/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/214363587?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,44362,74666</link.rule.ids></links><search><creatorcontrib>Alexandrov, Bogdan</creatorcontrib><title>Hyper-Hermitian Quaternionic Kahler Manifolds</title><title>Annals of global analysis and geometry</title><description>We call a quaternionic Kahler manifold with nonzero scalar curvature, whose quaternionic structure is trivialized by a hypercomplex structure, a hyper-Hermitian quaternionic Kahler manifold. We prove that every locally symmetric hyper-Hermitian quaternionic Kahler manifold is locally isometric to the quaternionic projective space or to the quaternionic hyperbolic space. We describe locally the hyper-Hermitian quaternionic Kahler manifolds with closed Lee form and show that the only complete simply connected such manifold is the quaternionic hyperbolic space. [PUBLICATION ABSTRACT]</description><subject>Eigenvalues</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Theory</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotjT1LxEAUABdRMJ7WtsF-9b39eondcagRT0RQsDvebjaYIyZxkxT-ew-0mmaYEeIS4RpB6Zv1LQI6ZaBAsiUdiQwtKVmCg2ORHQwlCczHqTibpj0AWI2YCVn9jDHJKqavdm65z18XnmPq26FvQ_7En11M-TP3bTN09XQuThrupnjxz5V4v79721Ry-_LwuFlv5YgFzJI8R9QqUKkMg_EByCsTHTbGN7Vl54FJ2eiCJ4g-AhkOwXFR1LU1QemVuPrrjmn4XuI07_bDkvrDcqfQaKdtQfoXY8JEnA</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Alexandrov, Bogdan</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20020801</creationdate><title>Hyper-Hermitian Quaternionic Kahler Manifolds</title><author>Alexandrov, Bogdan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p180t-7bae132c7924a04bc07b24e61f4bfd5a6b0a725e6cb70ebe074acc6a88dd54c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Eigenvalues</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexandrov, Bogdan</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexandrov, Bogdan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyper-Hermitian Quaternionic Kahler Manifolds</atitle><jtitle>Annals of global analysis and geometry</jtitle><date>2002-08-01</date><risdate>2002</risdate><volume>22</volume><issue>1</issue><spage>75</spage><pages>75-</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>We call a quaternionic Kahler manifold with nonzero scalar curvature, whose quaternionic structure is trivialized by a hypercomplex structure, a hyper-Hermitian quaternionic Kahler manifold. We prove that every locally symmetric hyper-Hermitian quaternionic Kahler manifold is locally isometric to the quaternionic projective space or to the quaternionic hyperbolic space. We describe locally the hyper-Hermitian quaternionic Kahler manifolds with closed Lee form and show that the only complete simply connected such manifold is the quaternionic hyperbolic space. [PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1016240817597</doi></addata></record>
fulltext fulltext
identifier ISSN: 0232-704X
ispartof Annals of global analysis and geometry, 2002-08, Vol.22 (1), p.75
issn 0232-704X
1572-9060
language eng
recordid cdi_proquest_journals_214363587
source ABI/INFORM Collection; Springer Nature
subjects Eigenvalues
Geometry
Mathematics
Theory
title Hyper-Hermitian Quaternionic Kahler Manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyper-Hermitian%20Quaternionic%20Kahler%20Manifolds&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Alexandrov,%20Bogdan&rft.date=2002-08-01&rft.volume=22&rft.issue=1&rft.spage=75&rft.pages=75-&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1023/A:1016240817597&rft_dat=%3Cproquest%3E338584111%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p180t-7bae132c7924a04bc07b24e61f4bfd5a6b0a725e6cb70ebe074acc6a88dd54c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214363587&rft_id=info:pmid/&rfr_iscdi=true