Loading…

The Gauss map of minimal surfaces in Berger spheres

It is proved that a pair of spinors satisfying a Dirac type equation represents surfaces immersed in Berger spheres with prescribed mean curvature. Using this, we prove that the Gauss map of a minimal surface immersed in a Berger sphere is harmonic. Conversely, we exhibit a representation of minimal...

Full description

Saved in:
Bibliographic Details
Published in:Annals of global analysis and geometry 2010-02, Vol.37 (2), p.143-162
Main Authors: de Lira, Jorge H. S., Hinojosa, Jorge A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-3f11b45e4e47da57511f7cc399ce205a07d05d3ab30e07c1a441819ee07c22f93
cites cdi_FETCH-LOGICAL-c315t-3f11b45e4e47da57511f7cc399ce205a07d05d3ab30e07c1a441819ee07c22f93
container_end_page 162
container_issue 2
container_start_page 143
container_title Annals of global analysis and geometry
container_volume 37
creator de Lira, Jorge H. S.
Hinojosa, Jorge A.
description It is proved that a pair of spinors satisfying a Dirac type equation represents surfaces immersed in Berger spheres with prescribed mean curvature. Using this, we prove that the Gauss map of a minimal surface immersed in a Berger sphere is harmonic. Conversely, we exhibit a representation of minimal surfaces in Berger spheres in terms of a given harmonic map. The examples we constructed appear in associated families.
doi_str_mv 10.1007/s10455-009-9178-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214375893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1939263551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-3f11b45e4e47da57511f7cc399ce205a07d05d3ab30e07c1a441819ee07c22f93</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvwHp3JH9MctWgVCl4qeAtpmtiWdnfNdA9-e1NW8ORpGHjvzbwfY9cItwhg7whBGyMAnHBoJ0KfsBEaK4WDezhlI5BKCgv645xdEG0BwCjEEVOLdeKz0BPxfeh4m_l-02z2YcepLznERHzT8MdUPlPh1K1TSXTJznLYUbr6nWP2_vy0mL6I-dvsdfowF1GhOQiVEZfaJJ20XQVjDWK2MSrnYpJgAtgVmJUKSwUJbMSgNU7QpeMiZXZqzG6G3K60X32ig9-2fWnqSS9RK2smTlURDqJYWqKSsu9K_b98ewR_ROMHNL6i8Uc0XlePHDxUtU1t9hf8v-kHJnVkjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214375893</pqid></control><display><type>article</type><title>The Gauss map of minimal surfaces in Berger spheres</title><source>Springer Nature</source><source>ProQuest ABI/INFORM Global</source><creator>de Lira, Jorge H. S. ; Hinojosa, Jorge A.</creator><creatorcontrib>de Lira, Jorge H. S. ; Hinojosa, Jorge A.</creatorcontrib><description>It is proved that a pair of spinors satisfying a Dirac type equation represents surfaces immersed in Berger spheres with prescribed mean curvature. Using this, we prove that the Gauss map of a minimal surface immersed in a Berger sphere is harmonic. Conversely, we exhibit a representation of minimal surfaces in Berger spheres in terms of a given harmonic map. The examples we constructed appear in associated families.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-009-9178-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Differential Geometry ; Geometry ; Global Analysis and Analysis on Manifolds ; Lie groups ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Spheres ; Studies</subject><ispartof>Annals of global analysis and geometry, 2010-02, Vol.37 (2), p.143-162</ispartof><rights>Springer Science+Business Media B.V. 2009</rights><rights>Springer Science+Business Media B.V. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-3f11b45e4e47da57511f7cc399ce205a07d05d3ab30e07c1a441819ee07c22f93</citedby><cites>FETCH-LOGICAL-c315t-3f11b45e4e47da57511f7cc399ce205a07d05d3ab30e07c1a441819ee07c22f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/214375893/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/214375893?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>de Lira, Jorge H. S.</creatorcontrib><creatorcontrib>Hinojosa, Jorge A.</creatorcontrib><title>The Gauss map of minimal surfaces in Berger spheres</title><title>Annals of global analysis and geometry</title><addtitle>Ann Glob Anal Geom</addtitle><description>It is proved that a pair of spinors satisfying a Dirac type equation represents surfaces immersed in Berger spheres with prescribed mean curvature. Using this, we prove that the Gauss map of a minimal surface immersed in a Berger sphere is harmonic. Conversely, we exhibit a representation of minimal surfaces in Berger spheres in terms of a given harmonic map. The examples we constructed appear in associated families.</description><subject>Analysis</subject><subject>Differential Geometry</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Lie groups</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Spheres</subject><subject>Studies</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvwHp3JH9MctWgVCl4qeAtpmtiWdnfNdA9-e1NW8ORpGHjvzbwfY9cItwhg7whBGyMAnHBoJ0KfsBEaK4WDezhlI5BKCgv645xdEG0BwCjEEVOLdeKz0BPxfeh4m_l-02z2YcepLznERHzT8MdUPlPh1K1TSXTJznLYUbr6nWP2_vy0mL6I-dvsdfowF1GhOQiVEZfaJJ20XQVjDWK2MSrnYpJgAtgVmJUKSwUJbMSgNU7QpeMiZXZqzG6G3K60X32ig9-2fWnqSS9RK2smTlURDqJYWqKSsu9K_b98ewR_ROMHNL6i8Uc0XlePHDxUtU1t9hf8v-kHJnVkjg</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>de Lira, Jorge H. S.</creator><creator>Hinojosa, Jorge A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100201</creationdate><title>The Gauss map of minimal surfaces in Berger spheres</title><author>de Lira, Jorge H. S. ; Hinojosa, Jorge A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-3f11b45e4e47da57511f7cc399ce205a07d05d3ab30e07c1a441819ee07c22f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis</topic><topic>Differential Geometry</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Lie groups</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Spheres</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Lira, Jorge H. S.</creatorcontrib><creatorcontrib>Hinojosa, Jorge A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest_Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Lira, Jorge H. S.</au><au>Hinojosa, Jorge A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Gauss map of minimal surfaces in Berger spheres</atitle><jtitle>Annals of global analysis and geometry</jtitle><stitle>Ann Glob Anal Geom</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>37</volume><issue>2</issue><spage>143</spage><epage>162</epage><pages>143-162</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>It is proved that a pair of spinors satisfying a Dirac type equation represents surfaces immersed in Berger spheres with prescribed mean curvature. Using this, we prove that the Gauss map of a minimal surface immersed in a Berger sphere is harmonic. Conversely, we exhibit a representation of minimal surfaces in Berger spheres in terms of a given harmonic map. The examples we constructed appear in associated families.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10455-009-9178-4</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0232-704X
ispartof Annals of global analysis and geometry, 2010-02, Vol.37 (2), p.143-162
issn 0232-704X
1572-9060
language eng
recordid cdi_proquest_journals_214375893
source Springer Nature; ProQuest ABI/INFORM Global
subjects Analysis
Differential Geometry
Geometry
Global Analysis and Analysis on Manifolds
Lie groups
Mathematical Physics
Mathematics
Mathematics and Statistics
Original Paper
Spheres
Studies
title The Gauss map of minimal surfaces in Berger spheres
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Gauss%20map%20of%20minimal%20surfaces%20in%20Berger%20spheres&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=de%20Lira,%20Jorge%20H.%20S.&rft.date=2010-02-01&rft.volume=37&rft.issue=2&rft.spage=143&rft.epage=162&rft.pages=143-162&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-009-9178-4&rft_dat=%3Cproquest_cross%3E1939263551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-3f11b45e4e47da57511f7cc399ce205a07d05d3ab30e07c1a441819ee07c22f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214375893&rft_id=info:pmid/&rfr_iscdi=true