Loading…
The Gauss map of minimal surfaces in Berger spheres
It is proved that a pair of spinors satisfying a Dirac type equation represents surfaces immersed in Berger spheres with prescribed mean curvature. Using this, we prove that the Gauss map of a minimal surface immersed in a Berger sphere is harmonic. Conversely, we exhibit a representation of minimal...
Saved in:
Published in: | Annals of global analysis and geometry 2010-02, Vol.37 (2), p.143-162 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c315t-3f11b45e4e47da57511f7cc399ce205a07d05d3ab30e07c1a441819ee07c22f93 |
---|---|
cites | cdi_FETCH-LOGICAL-c315t-3f11b45e4e47da57511f7cc399ce205a07d05d3ab30e07c1a441819ee07c22f93 |
container_end_page | 162 |
container_issue | 2 |
container_start_page | 143 |
container_title | Annals of global analysis and geometry |
container_volume | 37 |
creator | de Lira, Jorge H. S. Hinojosa, Jorge A. |
description | It is proved that a pair of spinors satisfying a Dirac type equation represents surfaces immersed in Berger spheres with prescribed mean curvature. Using this, we prove that the Gauss map of a minimal surface immersed in a Berger sphere is harmonic. Conversely, we exhibit a representation of minimal surfaces in Berger spheres in terms of a given harmonic map. The examples we constructed appear in associated families. |
doi_str_mv | 10.1007/s10455-009-9178-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214375893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1939263551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-3f11b45e4e47da57511f7cc399ce205a07d05d3ab30e07c1a441819ee07c22f93</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvwHp3JH9MctWgVCl4qeAtpmtiWdnfNdA9-e1NW8ORpGHjvzbwfY9cItwhg7whBGyMAnHBoJ0KfsBEaK4WDezhlI5BKCgv645xdEG0BwCjEEVOLdeKz0BPxfeh4m_l-02z2YcepLznERHzT8MdUPlPh1K1TSXTJznLYUbr6nWP2_vy0mL6I-dvsdfowF1GhOQiVEZfaJJ20XQVjDWK2MSrnYpJgAtgVmJUKSwUJbMSgNU7QpeMiZXZqzG6G3K60X32ig9-2fWnqSS9RK2smTlURDqJYWqKSsu9K_b98ewR_ROMHNL6i8Uc0XlePHDxUtU1t9hf8v-kHJnVkjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214375893</pqid></control><display><type>article</type><title>The Gauss map of minimal surfaces in Berger spheres</title><source>Springer Nature</source><source>ProQuest ABI/INFORM Global</source><creator>de Lira, Jorge H. S. ; Hinojosa, Jorge A.</creator><creatorcontrib>de Lira, Jorge H. S. ; Hinojosa, Jorge A.</creatorcontrib><description>It is proved that a pair of spinors satisfying a Dirac type equation represents surfaces immersed in Berger spheres with prescribed mean curvature. Using this, we prove that the Gauss map of a minimal surface immersed in a Berger sphere is harmonic. Conversely, we exhibit a representation of minimal surfaces in Berger spheres in terms of a given harmonic map. The examples we constructed appear in associated families.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-009-9178-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Differential Geometry ; Geometry ; Global Analysis and Analysis on Manifolds ; Lie groups ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Spheres ; Studies</subject><ispartof>Annals of global analysis and geometry, 2010-02, Vol.37 (2), p.143-162</ispartof><rights>Springer Science+Business Media B.V. 2009</rights><rights>Springer Science+Business Media B.V. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-3f11b45e4e47da57511f7cc399ce205a07d05d3ab30e07c1a441819ee07c22f93</citedby><cites>FETCH-LOGICAL-c315t-3f11b45e4e47da57511f7cc399ce205a07d05d3ab30e07c1a441819ee07c22f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/214375893/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/214375893?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>de Lira, Jorge H. S.</creatorcontrib><creatorcontrib>Hinojosa, Jorge A.</creatorcontrib><title>The Gauss map of minimal surfaces in Berger spheres</title><title>Annals of global analysis and geometry</title><addtitle>Ann Glob Anal Geom</addtitle><description>It is proved that a pair of spinors satisfying a Dirac type equation represents surfaces immersed in Berger spheres with prescribed mean curvature. Using this, we prove that the Gauss map of a minimal surface immersed in a Berger sphere is harmonic. Conversely, we exhibit a representation of minimal surfaces in Berger spheres in terms of a given harmonic map. The examples we constructed appear in associated families.</description><subject>Analysis</subject><subject>Differential Geometry</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Lie groups</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Spheres</subject><subject>Studies</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvwHp3JH9MctWgVCl4qeAtpmtiWdnfNdA9-e1NW8ORpGHjvzbwfY9cItwhg7whBGyMAnHBoJ0KfsBEaK4WDezhlI5BKCgv645xdEG0BwCjEEVOLdeKz0BPxfeh4m_l-02z2YcepLznERHzT8MdUPlPh1K1TSXTJznLYUbr6nWP2_vy0mL6I-dvsdfowF1GhOQiVEZfaJJ20XQVjDWK2MSrnYpJgAtgVmJUKSwUJbMSgNU7QpeMiZXZqzG6G3K60X32ig9-2fWnqSS9RK2smTlURDqJYWqKSsu9K_b98ewR_ROMHNL6i8Uc0XlePHDxUtU1t9hf8v-kHJnVkjg</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>de Lira, Jorge H. S.</creator><creator>Hinojosa, Jorge A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100201</creationdate><title>The Gauss map of minimal surfaces in Berger spheres</title><author>de Lira, Jorge H. S. ; Hinojosa, Jorge A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-3f11b45e4e47da57511f7cc399ce205a07d05d3ab30e07c1a441819ee07c22f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis</topic><topic>Differential Geometry</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Lie groups</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Spheres</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Lira, Jorge H. S.</creatorcontrib><creatorcontrib>Hinojosa, Jorge A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest_Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Lira, Jorge H. S.</au><au>Hinojosa, Jorge A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Gauss map of minimal surfaces in Berger spheres</atitle><jtitle>Annals of global analysis and geometry</jtitle><stitle>Ann Glob Anal Geom</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>37</volume><issue>2</issue><spage>143</spage><epage>162</epage><pages>143-162</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>It is proved that a pair of spinors satisfying a Dirac type equation represents surfaces immersed in Berger spheres with prescribed mean curvature. Using this, we prove that the Gauss map of a minimal surface immersed in a Berger sphere is harmonic. Conversely, we exhibit a representation of minimal surfaces in Berger spheres in terms of a given harmonic map. The examples we constructed appear in associated families.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10455-009-9178-4</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0232-704X |
ispartof | Annals of global analysis and geometry, 2010-02, Vol.37 (2), p.143-162 |
issn | 0232-704X 1572-9060 |
language | eng |
recordid | cdi_proquest_journals_214375893 |
source | Springer Nature; ProQuest ABI/INFORM Global |
subjects | Analysis Differential Geometry Geometry Global Analysis and Analysis on Manifolds Lie groups Mathematical Physics Mathematics Mathematics and Statistics Original Paper Spheres Studies |
title | The Gauss map of minimal surfaces in Berger spheres |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Gauss%20map%20of%20minimal%20surfaces%20in%20Berger%20spheres&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=de%20Lira,%20Jorge%20H.%20S.&rft.date=2010-02-01&rft.volume=37&rft.issue=2&rft.spage=143&rft.epage=162&rft.pages=143-162&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-009-9178-4&rft_dat=%3Cproquest_cross%3E1939263551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-3f11b45e4e47da57511f7cc399ce205a07d05d3ab30e07c1a441819ee07c22f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214375893&rft_id=info:pmid/&rfr_iscdi=true |