Loading…

On non-Gaussianity and dependence in financial time series: a nonextensive approach

In this article a probability density function and dependence degree analysis of financial time series, namely the Dow Jones and NYSE, is presented. The present study, which aims to give theoretical support to some stylized empirical evidence, is performed under the present non-extensive framework f...

Full description

Saved in:
Bibliographic Details
Published in:Quantitative finance 2005-10, Vol.5 (5), p.475-487
Main Author: Queiros, S. M. Duarte
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-ba4c5fdf28f5619898bbfcda962c64572dbb111fdc696be4360ad39c8848ea633
cites cdi_FETCH-LOGICAL-c470t-ba4c5fdf28f5619898bbfcda962c64572dbb111fdc696be4360ad39c8848ea633
container_end_page 487
container_issue 5
container_start_page 475
container_title Quantitative finance
container_volume 5
creator Queiros, S. M. Duarte
description In this article a probability density function and dependence degree analysis of financial time series, namely the Dow Jones and NYSE, is presented. The present study, which aims to give theoretical support to some stylized empirical evidence, is performed under the present non-extensive framework for which the probability distributions that optimize its fundamental information measure form, , are also the (stationary) solutions of a nonlinear Fokker-Plank equation. One determines the rescaled coefficient of the drift force and diffusion coefficient for both market indices and various aggregated times. Using a generalized form of Kullback-Leibler mutual information, I q , one analyses the non-Gaussianity of returns using the dependence between stock market index values. The same mutual information form is used to determine the degree of dependence between returns. The analysis shows that this dependence can be considered independent from the time distance τ result that is connected with the long-range correlation in volatility.
doi_str_mv 10.1080/14697680500244403
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214483703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>941165571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-ba4c5fdf28f5619898bbfcda962c64572dbb111fdc696be4360ad39c8848ea633</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoso-PkDvAXv1aRN01S8yKKrsOBBPYdpPtgsbVqTrO7-e1NWvCzi4SXDMM87mTfLLgm-JpjjG0JZUzOOK4wLSikuD7KTqZfXrGGHvzXnx9lpCCuMSZpsTrLXF4fc4PI5rEOw4GzcInAKKT1qp7STGlmHjHXgpIUORdtrFLS3OtwimFC9idoF-6kRjKMfQC7PsyMDXdAXP-9Z9v748DZ7yhcv8-fZ_SKXtMYxb4HKyihTcFMx0vCGt62RChpWSEarulBtSwgxSqYTWk1LhkGVjeSccg2sLM-yq51vWvux1iGK1bD2Lq0UBaGUlzWehshuSPohBK-NGL3twW8FwWKKTuxFl5jnHeNTCvIXiGA-1uCiEZ-ihCppm1RgPJX2pzUm0boSlNdiGfvkVe-8rDOD7-Fr8J1KVttu8MZPqYb9H4i4iYm8-5cs_z7iGzWSn9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214483703</pqid></control><display><type>article</type><title>On non-Gaussianity and dependence in financial time series: a nonextensive approach</title><source>EconLit s plnými texty</source><source>Business Source Ultimate</source><source>Taylor &amp; Francis</source><creator>Queiros, S. M. Duarte</creator><creatorcontrib>Queiros, S. M. Duarte</creatorcontrib><description>In this article a probability density function and dependence degree analysis of financial time series, namely the Dow Jones and NYSE, is presented. The present study, which aims to give theoretical support to some stylized empirical evidence, is performed under the present non-extensive framework for which the probability distributions that optimize its fundamental information measure form, , are also the (stationary) solutions of a nonlinear Fokker-Plank equation. One determines the rescaled coefficient of the drift force and diffusion coefficient for both market indices and various aggregated times. Using a generalized form of Kullback-Leibler mutual information, I q , one analyses the non-Gaussianity of returns using the dependence between stock market index values. The same mutual information form is used to determine the degree of dependence between returns. The analysis shows that this dependence can be considered independent from the time distance τ result that is connected with the long-range correlation in volatility.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697680500244403</identifier><language>eng</language><publisher>Bristol: Taylor &amp; Francis Group</publisher><subject>Mathematical models ; Securities markets ; Studies ; Time series</subject><ispartof>Quantitative finance, 2005-10, Vol.5 (5), p.475-487</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2005</rights><rights>Copyright American Institute of Physics Oct 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-ba4c5fdf28f5619898bbfcda962c64572dbb111fdc696be4360ad39c8848ea633</citedby><cites>FETCH-LOGICAL-c470t-ba4c5fdf28f5619898bbfcda962c64572dbb111fdc696be4360ad39c8848ea633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/tafquantf/v_3a5_3ay_3a2005_3ai_3a5_3ap_3a475-487.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Queiros, S. M. Duarte</creatorcontrib><title>On non-Gaussianity and dependence in financial time series: a nonextensive approach</title><title>Quantitative finance</title><description>In this article a probability density function and dependence degree analysis of financial time series, namely the Dow Jones and NYSE, is presented. The present study, which aims to give theoretical support to some stylized empirical evidence, is performed under the present non-extensive framework for which the probability distributions that optimize its fundamental information measure form, , are also the (stationary) solutions of a nonlinear Fokker-Plank equation. One determines the rescaled coefficient of the drift force and diffusion coefficient for both market indices and various aggregated times. Using a generalized form of Kullback-Leibler mutual information, I q , one analyses the non-Gaussianity of returns using the dependence between stock market index values. The same mutual information form is used to determine the degree of dependence between returns. The analysis shows that this dependence can be considered independent from the time distance τ result that is connected with the long-range correlation in volatility.</description><subject>Mathematical models</subject><subject>Securities markets</subject><subject>Studies</subject><subject>Time series</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoso-PkDvAXv1aRN01S8yKKrsOBBPYdpPtgsbVqTrO7-e1NWvCzi4SXDMM87mTfLLgm-JpjjG0JZUzOOK4wLSikuD7KTqZfXrGGHvzXnx9lpCCuMSZpsTrLXF4fc4PI5rEOw4GzcInAKKT1qp7STGlmHjHXgpIUORdtrFLS3OtwimFC9idoF-6kRjKMfQC7PsyMDXdAXP-9Z9v748DZ7yhcv8-fZ_SKXtMYxb4HKyihTcFMx0vCGt62RChpWSEarulBtSwgxSqYTWk1LhkGVjeSccg2sLM-yq51vWvux1iGK1bD2Lq0UBaGUlzWehshuSPohBK-NGL3twW8FwWKKTuxFl5jnHeNTCvIXiGA-1uCiEZ-ihCppm1RgPJX2pzUm0boSlNdiGfvkVe-8rDOD7-Fr8J1KVttu8MZPqYb9H4i4iYm8-5cs_z7iGzWSn9U</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Queiros, S. M. Duarte</creator><general>Taylor &amp; Francis Group</general><general>Taylor and Francis Journals</general><general>Taylor &amp; Francis Ltd</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051001</creationdate><title>On non-Gaussianity and dependence in financial time series: a nonextensive approach</title><author>Queiros, S. M. Duarte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-ba4c5fdf28f5619898bbfcda962c64572dbb111fdc696be4360ad39c8848ea633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Mathematical models</topic><topic>Securities markets</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Queiros, S. M. Duarte</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Queiros, S. M. Duarte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On non-Gaussianity and dependence in financial time series: a nonextensive approach</atitle><jtitle>Quantitative finance</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>5</volume><issue>5</issue><spage>475</spage><epage>487</epage><pages>475-487</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>In this article a probability density function and dependence degree analysis of financial time series, namely the Dow Jones and NYSE, is presented. The present study, which aims to give theoretical support to some stylized empirical evidence, is performed under the present non-extensive framework for which the probability distributions that optimize its fundamental information measure form, , are also the (stationary) solutions of a nonlinear Fokker-Plank equation. One determines the rescaled coefficient of the drift force and diffusion coefficient for both market indices and various aggregated times. Using a generalized form of Kullback-Leibler mutual information, I q , one analyses the non-Gaussianity of returns using the dependence between stock market index values. The same mutual information form is used to determine the degree of dependence between returns. The analysis shows that this dependence can be considered independent from the time distance τ result that is connected with the long-range correlation in volatility.</abstract><cop>Bristol</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/14697680500244403</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1469-7688
ispartof Quantitative finance, 2005-10, Vol.5 (5), p.475-487
issn 1469-7688
1469-7696
language eng
recordid cdi_proquest_journals_214483703
source EconLit s plnými texty; Business Source Ultimate; Taylor & Francis
subjects Mathematical models
Securities markets
Studies
Time series
title On non-Gaussianity and dependence in financial time series: a nonextensive approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20non-Gaussianity%20and%20dependence%20in%20financial%20time%20series:%20a%20nonextensive%20approach&rft.jtitle=Quantitative%20finance&rft.au=Queiros,%20S.%20M.%20Duarte&rft.date=2005-10-01&rft.volume=5&rft.issue=5&rft.spage=475&rft.epage=487&rft.pages=475-487&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697680500244403&rft_dat=%3Cproquest_cross%3E941165571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-ba4c5fdf28f5619898bbfcda962c64572dbb111fdc696be4360ad39c8848ea633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214483703&rft_id=info:pmid/&rfr_iscdi=true