Loading…
On non-Gaussianity and dependence in financial time series: a nonextensive approach
In this article a probability density function and dependence degree analysis of financial time series, namely the Dow Jones and NYSE, is presented. The present study, which aims to give theoretical support to some stylized empirical evidence, is performed under the present non-extensive framework f...
Saved in:
Published in: | Quantitative finance 2005-10, Vol.5 (5), p.475-487 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-ba4c5fdf28f5619898bbfcda962c64572dbb111fdc696be4360ad39c8848ea633 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-ba4c5fdf28f5619898bbfcda962c64572dbb111fdc696be4360ad39c8848ea633 |
container_end_page | 487 |
container_issue | 5 |
container_start_page | 475 |
container_title | Quantitative finance |
container_volume | 5 |
creator | Queiros, S. M. Duarte |
description | In this article a probability density function and dependence degree analysis of financial time series, namely the Dow Jones and NYSE, is presented. The present study, which aims to give theoretical support to some stylized empirical evidence, is performed under the present non-extensive framework for which the probability distributions that optimize its fundamental information measure form,
, are also the (stationary) solutions of a nonlinear Fokker-Plank equation. One determines the rescaled coefficient of the drift force and diffusion coefficient for both market indices and various aggregated times. Using a generalized form of Kullback-Leibler mutual information, I
q
, one analyses the non-Gaussianity of returns using the dependence between stock market index values. The same mutual information form is used to determine the degree of dependence between returns. The analysis shows that this dependence can be considered independent from the time distance τ result that is connected with the long-range correlation in volatility. |
doi_str_mv | 10.1080/14697680500244403 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214483703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>941165571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-ba4c5fdf28f5619898bbfcda962c64572dbb111fdc696be4360ad39c8848ea633</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoso-PkDvAXv1aRN01S8yKKrsOBBPYdpPtgsbVqTrO7-e1NWvCzi4SXDMM87mTfLLgm-JpjjG0JZUzOOK4wLSikuD7KTqZfXrGGHvzXnx9lpCCuMSZpsTrLXF4fc4PI5rEOw4GzcInAKKT1qp7STGlmHjHXgpIUORdtrFLS3OtwimFC9idoF-6kRjKMfQC7PsyMDXdAXP-9Z9v748DZ7yhcv8-fZ_SKXtMYxb4HKyihTcFMx0vCGt62RChpWSEarulBtSwgxSqYTWk1LhkGVjeSccg2sLM-yq51vWvux1iGK1bD2Lq0UBaGUlzWehshuSPohBK-NGL3twW8FwWKKTuxFl5jnHeNTCvIXiGA-1uCiEZ-ihCppm1RgPJX2pzUm0boSlNdiGfvkVe-8rDOD7-Fr8J1KVttu8MZPqYb9H4i4iYm8-5cs_z7iGzWSn9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214483703</pqid></control><display><type>article</type><title>On non-Gaussianity and dependence in financial time series: a nonextensive approach</title><source>EconLit s plnými texty</source><source>Business Source Ultimate</source><source>Taylor & Francis</source><creator>Queiros, S. M. Duarte</creator><creatorcontrib>Queiros, S. M. Duarte</creatorcontrib><description>In this article a probability density function and dependence degree analysis of financial time series, namely the Dow Jones and NYSE, is presented. The present study, which aims to give theoretical support to some stylized empirical evidence, is performed under the present non-extensive framework for which the probability distributions that optimize its fundamental information measure form,
, are also the (stationary) solutions of a nonlinear Fokker-Plank equation. One determines the rescaled coefficient of the drift force and diffusion coefficient for both market indices and various aggregated times. Using a generalized form of Kullback-Leibler mutual information, I
q
, one analyses the non-Gaussianity of returns using the dependence between stock market index values. The same mutual information form is used to determine the degree of dependence between returns. The analysis shows that this dependence can be considered independent from the time distance τ result that is connected with the long-range correlation in volatility.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697680500244403</identifier><language>eng</language><publisher>Bristol: Taylor & Francis Group</publisher><subject>Mathematical models ; Securities markets ; Studies ; Time series</subject><ispartof>Quantitative finance, 2005-10, Vol.5 (5), p.475-487</ispartof><rights>Copyright Taylor & Francis Group, LLC 2005</rights><rights>Copyright American Institute of Physics Oct 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-ba4c5fdf28f5619898bbfcda962c64572dbb111fdc696be4360ad39c8848ea633</citedby><cites>FETCH-LOGICAL-c470t-ba4c5fdf28f5619898bbfcda962c64572dbb111fdc696be4360ad39c8848ea633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/tafquantf/v_3a5_3ay_3a2005_3ai_3a5_3ap_3a475-487.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Queiros, S. M. Duarte</creatorcontrib><title>On non-Gaussianity and dependence in financial time series: a nonextensive approach</title><title>Quantitative finance</title><description>In this article a probability density function and dependence degree analysis of financial time series, namely the Dow Jones and NYSE, is presented. The present study, which aims to give theoretical support to some stylized empirical evidence, is performed under the present non-extensive framework for which the probability distributions that optimize its fundamental information measure form,
, are also the (stationary) solutions of a nonlinear Fokker-Plank equation. One determines the rescaled coefficient of the drift force and diffusion coefficient for both market indices and various aggregated times. Using a generalized form of Kullback-Leibler mutual information, I
q
, one analyses the non-Gaussianity of returns using the dependence between stock market index values. The same mutual information form is used to determine the degree of dependence between returns. The analysis shows that this dependence can be considered independent from the time distance τ result that is connected with the long-range correlation in volatility.</description><subject>Mathematical models</subject><subject>Securities markets</subject><subject>Studies</subject><subject>Time series</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoso-PkDvAXv1aRN01S8yKKrsOBBPYdpPtgsbVqTrO7-e1NWvCzi4SXDMM87mTfLLgm-JpjjG0JZUzOOK4wLSikuD7KTqZfXrGGHvzXnx9lpCCuMSZpsTrLXF4fc4PI5rEOw4GzcInAKKT1qp7STGlmHjHXgpIUORdtrFLS3OtwimFC9idoF-6kRjKMfQC7PsyMDXdAXP-9Z9v748DZ7yhcv8-fZ_SKXtMYxb4HKyihTcFMx0vCGt62RChpWSEarulBtSwgxSqYTWk1LhkGVjeSccg2sLM-yq51vWvux1iGK1bD2Lq0UBaGUlzWehshuSPohBK-NGL3twW8FwWKKTuxFl5jnHeNTCvIXiGA-1uCiEZ-ihCppm1RgPJX2pzUm0boSlNdiGfvkVe-8rDOD7-Fr8J1KVttu8MZPqYb9H4i4iYm8-5cs_z7iGzWSn9U</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Queiros, S. M. Duarte</creator><general>Taylor & Francis Group</general><general>Taylor and Francis Journals</general><general>Taylor & Francis Ltd</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051001</creationdate><title>On non-Gaussianity and dependence in financial time series: a nonextensive approach</title><author>Queiros, S. M. Duarte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-ba4c5fdf28f5619898bbfcda962c64572dbb111fdc696be4360ad39c8848ea633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Mathematical models</topic><topic>Securities markets</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Queiros, S. M. Duarte</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Queiros, S. M. Duarte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On non-Gaussianity and dependence in financial time series: a nonextensive approach</atitle><jtitle>Quantitative finance</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>5</volume><issue>5</issue><spage>475</spage><epage>487</epage><pages>475-487</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>In this article a probability density function and dependence degree analysis of financial time series, namely the Dow Jones and NYSE, is presented. The present study, which aims to give theoretical support to some stylized empirical evidence, is performed under the present non-extensive framework for which the probability distributions that optimize its fundamental information measure form,
, are also the (stationary) solutions of a nonlinear Fokker-Plank equation. One determines the rescaled coefficient of the drift force and diffusion coefficient for both market indices and various aggregated times. Using a generalized form of Kullback-Leibler mutual information, I
q
, one analyses the non-Gaussianity of returns using the dependence between stock market index values. The same mutual information form is used to determine the degree of dependence between returns. The analysis shows that this dependence can be considered independent from the time distance τ result that is connected with the long-range correlation in volatility.</abstract><cop>Bristol</cop><pub>Taylor & Francis Group</pub><doi>10.1080/14697680500244403</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-7688 |
ispartof | Quantitative finance, 2005-10, Vol.5 (5), p.475-487 |
issn | 1469-7688 1469-7696 |
language | eng |
recordid | cdi_proquest_journals_214483703 |
source | EconLit s plnými texty; Business Source Ultimate; Taylor & Francis |
subjects | Mathematical models Securities markets Studies Time series |
title | On non-Gaussianity and dependence in financial time series: a nonextensive approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20non-Gaussianity%20and%20dependence%20in%20financial%20time%20series:%20a%20nonextensive%20approach&rft.jtitle=Quantitative%20finance&rft.au=Queiros,%20S.%20M.%20Duarte&rft.date=2005-10-01&rft.volume=5&rft.issue=5&rft.spage=475&rft.epage=487&rft.pages=475-487&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697680500244403&rft_dat=%3Cproquest_cross%3E941165571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-ba4c5fdf28f5619898bbfcda962c64572dbb111fdc696be4360ad39c8848ea633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214483703&rft_id=info:pmid/&rfr_iscdi=true |