Loading…

Choice-based EMSR methods for single-leg revenue management with demand dependencies

Revenue management (RM) based on customer choice models has gained interest in the 21st century. Changes in airline distribution strategies and improvements in online search engines have resulted in fierce competition, fare transparency and greater usage of restriction-free pricing. Existing solutio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of revenue and pricing management 2009-03, Vol.8 (2-3), p.207-240
Main Authors: Gallego, Guillermo, Li, Lin, Ratliff, Richard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-99b6e4af8e0c34721b69c80e9975eb9477150679bdff7e44a693bf2382c0151c3
cites cdi_FETCH-LOGICAL-c379t-99b6e4af8e0c34721b69c80e9975eb9477150679bdff7e44a693bf2382c0151c3
container_end_page 240
container_issue 2-3
container_start_page 207
container_title Journal of revenue and pricing management
container_volume 8
creator Gallego, Guillermo
Li, Lin
Ratliff, Richard
description Revenue management (RM) based on customer choice models has gained interest in the 21st century. Changes in airline distribution strategies and improvements in online search engines have resulted in fierce competition, fare transparency and greater usage of restriction-free pricing. Existing solutions to RM with restriction-free pricing have proven ineffective and use either ad hoc adjustments to traditional capacity allocation or computationally intensive dynamic programming. We present new generalised EMSR formulations for the single-leg, nested, multiple fare RM problem that work in both restriction-free and traditional airfare conditions. In our framework, demand for different fare classes is estimated by a customer choice model. We show how a multinomial logit demand model can provide upsell estimates for handling dependent demands and also account for competitive effects. We develop efficient and nearly optimal static heuristics for RM optimisation that are more general and provide better performance than the widely used EMSR-b algorithm for independent demands. Variations of the algorithm for both low-to-high and mixed arrival order cases are provided.
doi_str_mv 10.1057/rpm.2008.53
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214492271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1666052011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-99b6e4af8e0c34721b69c80e9975eb9477150679bdff7e44a693bf2382c0151c3</originalsourceid><addsrcrecordid>eNqF0M1KxDAUBeAgCo6jKx_A4FY7JmnaNEsZxh9QBB3BXUjT206HaVqTVvHtzVjRjeDqXsLHyeUgdEzJjJJEXLiumTFCslkS76AJ5UJEaSJedr_2NEplTPbRgfdrQhhLuZig5XzV1gaiXHso8OL-6RE30K_awuOyddjXttpAtIEKO3gDOwButNUVNGB7_F73K1xAeCnC6MAWYE0N_hDtlXrj4eh7TtHz1WI5v4nuHq5v55d3kYmF7CMp8xS4LjMgJuaC0TyVJiMgpUggl-F6mpBUyLwoSwGc63B_XrI4Y4bQhJp4ik7H3M61rwP4Xq3bwdnwpWKUc8mYoP-iEMUDOhuRca33DkrVubrR7kNRorbVqlCt2larkjjo81H7oGwF7jfyb34ycqv7wcFPdDBbEsQnmKOEow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214490154</pqid></control><display><type>article</type><title>Choice-based EMSR methods for single-leg revenue management with demand dependencies</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><creator>Gallego, Guillermo ; Li, Lin ; Ratliff, Richard</creator><creatorcontrib>Gallego, Guillermo ; Li, Lin ; Ratliff, Richard</creatorcontrib><description>Revenue management (RM) based on customer choice models has gained interest in the 21st century. Changes in airline distribution strategies and improvements in online search engines have resulted in fierce competition, fare transparency and greater usage of restriction-free pricing. Existing solutions to RM with restriction-free pricing have proven ineffective and use either ad hoc adjustments to traditional capacity allocation or computationally intensive dynamic programming. We present new generalised EMSR formulations for the single-leg, nested, multiple fare RM problem that work in both restriction-free and traditional airfare conditions. In our framework, demand for different fare classes is estimated by a customer choice model. We show how a multinomial logit demand model can provide upsell estimates for handling dependent demands and also account for competitive effects. We develop efficient and nearly optimal static heuristics for RM optimisation that are more general and provide better performance than the widely used EMSR-b algorithm for independent demands. Variations of the algorithm for both low-to-high and mixed arrival order cases are provided.</description><identifier>ISSN: 1476-6930</identifier><identifier>EISSN: 1477-657X</identifier><identifier>DOI: 10.1057/rpm.2008.53</identifier><language>eng</language><publisher>London: Palgrave Macmillan UK</publisher><subject>Air fares ; Airline industry ; Business and Management ; Competition ; Dynamic programming ; Heuristic ; Optimization ; Price elasticity ; Research Article ; Restrictions ; Revenue management ; Sales</subject><ispartof>Journal of revenue and pricing management, 2009-03, Vol.8 (2-3), p.207-240</ispartof><rights>Palgrave Macmillan 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-99b6e4af8e0c34721b69c80e9975eb9477150679bdff7e44a693bf2382c0151c3</citedby><cites>FETCH-LOGICAL-c379t-99b6e4af8e0c34721b69c80e9975eb9477150679bdff7e44a693bf2382c0151c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/214490154/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/214490154?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Gallego, Guillermo</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Ratliff, Richard</creatorcontrib><title>Choice-based EMSR methods for single-leg revenue management with demand dependencies</title><title>Journal of revenue and pricing management</title><addtitle>J Revenue Pricing Manag</addtitle><description>Revenue management (RM) based on customer choice models has gained interest in the 21st century. Changes in airline distribution strategies and improvements in online search engines have resulted in fierce competition, fare transparency and greater usage of restriction-free pricing. Existing solutions to RM with restriction-free pricing have proven ineffective and use either ad hoc adjustments to traditional capacity allocation or computationally intensive dynamic programming. We present new generalised EMSR formulations for the single-leg, nested, multiple fare RM problem that work in both restriction-free and traditional airfare conditions. In our framework, demand for different fare classes is estimated by a customer choice model. We show how a multinomial logit demand model can provide upsell estimates for handling dependent demands and also account for competitive effects. We develop efficient and nearly optimal static heuristics for RM optimisation that are more general and provide better performance than the widely used EMSR-b algorithm for independent demands. Variations of the algorithm for both low-to-high and mixed arrival order cases are provided.</description><subject>Air fares</subject><subject>Airline industry</subject><subject>Business and Management</subject><subject>Competition</subject><subject>Dynamic programming</subject><subject>Heuristic</subject><subject>Optimization</subject><subject>Price elasticity</subject><subject>Research Article</subject><subject>Restrictions</subject><subject>Revenue management</subject><subject>Sales</subject><issn>1476-6930</issn><issn>1477-657X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqF0M1KxDAUBeAgCo6jKx_A4FY7JmnaNEsZxh9QBB3BXUjT206HaVqTVvHtzVjRjeDqXsLHyeUgdEzJjJJEXLiumTFCslkS76AJ5UJEaSJedr_2NEplTPbRgfdrQhhLuZig5XzV1gaiXHso8OL-6RE30K_awuOyddjXttpAtIEKO3gDOwButNUVNGB7_F73K1xAeCnC6MAWYE0N_hDtlXrj4eh7TtHz1WI5v4nuHq5v55d3kYmF7CMp8xS4LjMgJuaC0TyVJiMgpUggl-F6mpBUyLwoSwGc63B_XrI4Y4bQhJp4ik7H3M61rwP4Xq3bwdnwpWKUc8mYoP-iEMUDOhuRca33DkrVubrR7kNRorbVqlCt2larkjjo81H7oGwF7jfyb34ycqv7wcFPdDBbEsQnmKOEow</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Gallego, Guillermo</creator><creator>Li, Lin</creator><creator>Ratliff, Richard</creator><general>Palgrave Macmillan UK</general><general>Palgrave Macmillan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>87Z</scope><scope>8A9</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20090301</creationdate><title>Choice-based EMSR methods for single-leg revenue management with demand dependencies</title><author>Gallego, Guillermo ; Li, Lin ; Ratliff, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-99b6e4af8e0c34721b69c80e9975eb9477150679bdff7e44a693bf2382c0151c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Air fares</topic><topic>Airline industry</topic><topic>Business and Management</topic><topic>Competition</topic><topic>Dynamic programming</topic><topic>Heuristic</topic><topic>Optimization</topic><topic>Price elasticity</topic><topic>Research Article</topic><topic>Restrictions</topic><topic>Revenue management</topic><topic>Sales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallego, Guillermo</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Ratliff, Richard</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting &amp; Tax Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Accounting &amp; Tax Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Accounting, Tax &amp; Banking Collection (ProQuest)</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Accounting, Tax &amp; Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of revenue and pricing management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallego, Guillermo</au><au>Li, Lin</au><au>Ratliff, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Choice-based EMSR methods for single-leg revenue management with demand dependencies</atitle><jtitle>Journal of revenue and pricing management</jtitle><stitle>J Revenue Pricing Manag</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>8</volume><issue>2-3</issue><spage>207</spage><epage>240</epage><pages>207-240</pages><issn>1476-6930</issn><eissn>1477-657X</eissn><abstract>Revenue management (RM) based on customer choice models has gained interest in the 21st century. Changes in airline distribution strategies and improvements in online search engines have resulted in fierce competition, fare transparency and greater usage of restriction-free pricing. Existing solutions to RM with restriction-free pricing have proven ineffective and use either ad hoc adjustments to traditional capacity allocation or computationally intensive dynamic programming. We present new generalised EMSR formulations for the single-leg, nested, multiple fare RM problem that work in both restriction-free and traditional airfare conditions. In our framework, demand for different fare classes is estimated by a customer choice model. We show how a multinomial logit demand model can provide upsell estimates for handling dependent demands and also account for competitive effects. We develop efficient and nearly optimal static heuristics for RM optimisation that are more general and provide better performance than the widely used EMSR-b algorithm for independent demands. Variations of the algorithm for both low-to-high and mixed arrival order cases are provided.</abstract><cop>London</cop><pub>Palgrave Macmillan UK</pub><doi>10.1057/rpm.2008.53</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-6930
ispartof Journal of revenue and pricing management, 2009-03, Vol.8 (2-3), p.207-240
issn 1476-6930
1477-657X
language eng
recordid cdi_proquest_journals_214492271
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM Global (ProQuest); Springer Link
subjects Air fares
Airline industry
Business and Management
Competition
Dynamic programming
Heuristic
Optimization
Price elasticity
Research Article
Restrictions
Revenue management
Sales
title Choice-based EMSR methods for single-leg revenue management with demand dependencies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Choice-based%20EMSR%20methods%20for%20single-leg%20revenue%20management%20with%20demand%20dependencies&rft.jtitle=Journal%20of%20revenue%20and%20pricing%20management&rft.au=Gallego,%20Guillermo&rft.date=2009-03-01&rft.volume=8&rft.issue=2-3&rft.spage=207&rft.epage=240&rft.pages=207-240&rft.issn=1476-6930&rft.eissn=1477-657X&rft_id=info:doi/10.1057/rpm.2008.53&rft_dat=%3Cproquest_cross%3E1666052011%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-99b6e4af8e0c34721b69c80e9975eb9477150679bdff7e44a693bf2382c0151c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214490154&rft_id=info:pmid/&rfr_iscdi=true