Loading…
Choice-based EMSR methods for single-leg revenue management with demand dependencies
Revenue management (RM) based on customer choice models has gained interest in the 21st century. Changes in airline distribution strategies and improvements in online search engines have resulted in fierce competition, fare transparency and greater usage of restriction-free pricing. Existing solutio...
Saved in:
Published in: | Journal of revenue and pricing management 2009-03, Vol.8 (2-3), p.207-240 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-99b6e4af8e0c34721b69c80e9975eb9477150679bdff7e44a693bf2382c0151c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-99b6e4af8e0c34721b69c80e9975eb9477150679bdff7e44a693bf2382c0151c3 |
container_end_page | 240 |
container_issue | 2-3 |
container_start_page | 207 |
container_title | Journal of revenue and pricing management |
container_volume | 8 |
creator | Gallego, Guillermo Li, Lin Ratliff, Richard |
description | Revenue management (RM) based on customer choice models has gained interest in the 21st century. Changes in airline distribution strategies and improvements in online search engines have resulted in fierce competition, fare transparency and greater usage of restriction-free pricing. Existing solutions to RM with restriction-free pricing have proven ineffective and use either
ad hoc
adjustments to traditional capacity allocation or computationally intensive dynamic programming. We present new generalised EMSR formulations for the single-leg, nested, multiple fare RM problem that work in both restriction-free and traditional airfare conditions. In our framework, demand for different fare classes is estimated by a customer choice model. We show how a multinomial logit demand model can provide upsell estimates for handling dependent demands and also account for competitive effects. We develop efficient and nearly optimal static heuristics for RM optimisation that are more general and provide better performance than the widely used EMSR-b algorithm for independent demands. Variations of the algorithm for both low-to-high and mixed arrival order cases are provided. |
doi_str_mv | 10.1057/rpm.2008.53 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214492271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1666052011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-99b6e4af8e0c34721b69c80e9975eb9477150679bdff7e44a693bf2382c0151c3</originalsourceid><addsrcrecordid>eNqF0M1KxDAUBeAgCo6jKx_A4FY7JmnaNEsZxh9QBB3BXUjT206HaVqTVvHtzVjRjeDqXsLHyeUgdEzJjJJEXLiumTFCslkS76AJ5UJEaSJedr_2NEplTPbRgfdrQhhLuZig5XzV1gaiXHso8OL-6RE30K_awuOyddjXttpAtIEKO3gDOwButNUVNGB7_F73K1xAeCnC6MAWYE0N_hDtlXrj4eh7TtHz1WI5v4nuHq5v55d3kYmF7CMp8xS4LjMgJuaC0TyVJiMgpUggl-F6mpBUyLwoSwGc63B_XrI4Y4bQhJp4ik7H3M61rwP4Xq3bwdnwpWKUc8mYoP-iEMUDOhuRca33DkrVubrR7kNRorbVqlCt2larkjjo81H7oGwF7jfyb34ycqv7wcFPdDBbEsQnmKOEow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214490154</pqid></control><display><type>article</type><title>Choice-based EMSR methods for single-leg revenue management with demand dependencies</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><creator>Gallego, Guillermo ; Li, Lin ; Ratliff, Richard</creator><creatorcontrib>Gallego, Guillermo ; Li, Lin ; Ratliff, Richard</creatorcontrib><description>Revenue management (RM) based on customer choice models has gained interest in the 21st century. Changes in airline distribution strategies and improvements in online search engines have resulted in fierce competition, fare transparency and greater usage of restriction-free pricing. Existing solutions to RM with restriction-free pricing have proven ineffective and use either
ad hoc
adjustments to traditional capacity allocation or computationally intensive dynamic programming. We present new generalised EMSR formulations for the single-leg, nested, multiple fare RM problem that work in both restriction-free and traditional airfare conditions. In our framework, demand for different fare classes is estimated by a customer choice model. We show how a multinomial logit demand model can provide upsell estimates for handling dependent demands and also account for competitive effects. We develop efficient and nearly optimal static heuristics for RM optimisation that are more general and provide better performance than the widely used EMSR-b algorithm for independent demands. Variations of the algorithm for both low-to-high and mixed arrival order cases are provided.</description><identifier>ISSN: 1476-6930</identifier><identifier>EISSN: 1477-657X</identifier><identifier>DOI: 10.1057/rpm.2008.53</identifier><language>eng</language><publisher>London: Palgrave Macmillan UK</publisher><subject>Air fares ; Airline industry ; Business and Management ; Competition ; Dynamic programming ; Heuristic ; Optimization ; Price elasticity ; Research Article ; Restrictions ; Revenue management ; Sales</subject><ispartof>Journal of revenue and pricing management, 2009-03, Vol.8 (2-3), p.207-240</ispartof><rights>Palgrave Macmillan 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-99b6e4af8e0c34721b69c80e9975eb9477150679bdff7e44a693bf2382c0151c3</citedby><cites>FETCH-LOGICAL-c379t-99b6e4af8e0c34721b69c80e9975eb9477150679bdff7e44a693bf2382c0151c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/214490154/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/214490154?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Gallego, Guillermo</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Ratliff, Richard</creatorcontrib><title>Choice-based EMSR methods for single-leg revenue management with demand dependencies</title><title>Journal of revenue and pricing management</title><addtitle>J Revenue Pricing Manag</addtitle><description>Revenue management (RM) based on customer choice models has gained interest in the 21st century. Changes in airline distribution strategies and improvements in online search engines have resulted in fierce competition, fare transparency and greater usage of restriction-free pricing. Existing solutions to RM with restriction-free pricing have proven ineffective and use either
ad hoc
adjustments to traditional capacity allocation or computationally intensive dynamic programming. We present new generalised EMSR formulations for the single-leg, nested, multiple fare RM problem that work in both restriction-free and traditional airfare conditions. In our framework, demand for different fare classes is estimated by a customer choice model. We show how a multinomial logit demand model can provide upsell estimates for handling dependent demands and also account for competitive effects. We develop efficient and nearly optimal static heuristics for RM optimisation that are more general and provide better performance than the widely used EMSR-b algorithm for independent demands. Variations of the algorithm for both low-to-high and mixed arrival order cases are provided.</description><subject>Air fares</subject><subject>Airline industry</subject><subject>Business and Management</subject><subject>Competition</subject><subject>Dynamic programming</subject><subject>Heuristic</subject><subject>Optimization</subject><subject>Price elasticity</subject><subject>Research Article</subject><subject>Restrictions</subject><subject>Revenue management</subject><subject>Sales</subject><issn>1476-6930</issn><issn>1477-657X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqF0M1KxDAUBeAgCo6jKx_A4FY7JmnaNEsZxh9QBB3BXUjT206HaVqTVvHtzVjRjeDqXsLHyeUgdEzJjJJEXLiumTFCslkS76AJ5UJEaSJedr_2NEplTPbRgfdrQhhLuZig5XzV1gaiXHso8OL-6RE30K_awuOyddjXttpAtIEKO3gDOwButNUVNGB7_F73K1xAeCnC6MAWYE0N_hDtlXrj4eh7TtHz1WI5v4nuHq5v55d3kYmF7CMp8xS4LjMgJuaC0TyVJiMgpUggl-F6mpBUyLwoSwGc63B_XrI4Y4bQhJp4ik7H3M61rwP4Xq3bwdnwpWKUc8mYoP-iEMUDOhuRca33DkrVubrR7kNRorbVqlCt2larkjjo81H7oGwF7jfyb34ycqv7wcFPdDBbEsQnmKOEow</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Gallego, Guillermo</creator><creator>Li, Lin</creator><creator>Ratliff, Richard</creator><general>Palgrave Macmillan UK</general><general>Palgrave Macmillan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>87Z</scope><scope>8A9</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20090301</creationdate><title>Choice-based EMSR methods for single-leg revenue management with demand dependencies</title><author>Gallego, Guillermo ; Li, Lin ; Ratliff, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-99b6e4af8e0c34721b69c80e9975eb9477150679bdff7e44a693bf2382c0151c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Air fares</topic><topic>Airline industry</topic><topic>Business and Management</topic><topic>Competition</topic><topic>Dynamic programming</topic><topic>Heuristic</topic><topic>Optimization</topic><topic>Price elasticity</topic><topic>Research Article</topic><topic>Restrictions</topic><topic>Revenue management</topic><topic>Sales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallego, Guillermo</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Ratliff, Richard</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting & Tax Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Accounting & Tax Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Accounting, Tax & Banking Collection (ProQuest)</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Accounting, Tax & Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of revenue and pricing management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallego, Guillermo</au><au>Li, Lin</au><au>Ratliff, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Choice-based EMSR methods for single-leg revenue management with demand dependencies</atitle><jtitle>Journal of revenue and pricing management</jtitle><stitle>J Revenue Pricing Manag</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>8</volume><issue>2-3</issue><spage>207</spage><epage>240</epage><pages>207-240</pages><issn>1476-6930</issn><eissn>1477-657X</eissn><abstract>Revenue management (RM) based on customer choice models has gained interest in the 21st century. Changes in airline distribution strategies and improvements in online search engines have resulted in fierce competition, fare transparency and greater usage of restriction-free pricing. Existing solutions to RM with restriction-free pricing have proven ineffective and use either
ad hoc
adjustments to traditional capacity allocation or computationally intensive dynamic programming. We present new generalised EMSR formulations for the single-leg, nested, multiple fare RM problem that work in both restriction-free and traditional airfare conditions. In our framework, demand for different fare classes is estimated by a customer choice model. We show how a multinomial logit demand model can provide upsell estimates for handling dependent demands and also account for competitive effects. We develop efficient and nearly optimal static heuristics for RM optimisation that are more general and provide better performance than the widely used EMSR-b algorithm for independent demands. Variations of the algorithm for both low-to-high and mixed arrival order cases are provided.</abstract><cop>London</cop><pub>Palgrave Macmillan UK</pub><doi>10.1057/rpm.2008.53</doi><tpages>34</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-6930 |
ispartof | Journal of revenue and pricing management, 2009-03, Vol.8 (2-3), p.207-240 |
issn | 1476-6930 1477-657X |
language | eng |
recordid | cdi_proquest_journals_214492271 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM Global (ProQuest); Springer Link |
subjects | Air fares Airline industry Business and Management Competition Dynamic programming Heuristic Optimization Price elasticity Research Article Restrictions Revenue management Sales |
title | Choice-based EMSR methods for single-leg revenue management with demand dependencies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Choice-based%20EMSR%20methods%20for%20single-leg%20revenue%20management%20with%20demand%20dependencies&rft.jtitle=Journal%20of%20revenue%20and%20pricing%20management&rft.au=Gallego,%20Guillermo&rft.date=2009-03-01&rft.volume=8&rft.issue=2-3&rft.spage=207&rft.epage=240&rft.pages=207-240&rft.issn=1476-6930&rft.eissn=1477-657X&rft_id=info:doi/10.1057/rpm.2008.53&rft_dat=%3Cproquest_cross%3E1666052011%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-99b6e4af8e0c34721b69c80e9975eb9477150679bdff7e44a693bf2382c0151c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214490154&rft_id=info:pmid/&rfr_iscdi=true |