Loading…
Algorithm robust for the bicriteria discrete optimization problem: Heuristic variations and computational evidence
We apply Algorithm Robust to various problems in multiple objective discrete optimization. Algorithm Robust is a general procedure that is designed to solve bicriteria optimization problems. The algorithm performs a weight space search in which the weights are utilized in min-max type subproblems. I...
Saved in:
Published in: | Annals of operations research 2006-10, Vol.147 (1), p.71-85 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c224t-9afb62f4f9d643c7207cd29b96a151d9f7c586eca037cbd3486813822dd96bbc3 |
container_end_page | 85 |
container_issue | 1 |
container_start_page | 71 |
container_title | Annals of operations research |
container_volume | 147 |
creator | Kouvelis, Panos Sayın, Serpil |
description | We apply Algorithm Robust to various problems in multiple objective discrete optimization. Algorithm Robust is a general procedure that is designed to solve bicriteria optimization problems. The algorithm performs a weight space search in which the weights are utilized in min-max type subproblems. In this paper, we experiment with Algorithm Robust on the bicriteria knapsack problem, the bicriteria assignment problem, and the bicriteria minimum cost network flow problem. We look at a heuristic variation that is based on controlling the weight space search and has an indirect control on the sample of efficient solutions generated. We then study another heuristic variation which generates samples of the efficient set with quality guarantees. We report results of computational experiments. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s10479-006-0062-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214505133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1141566441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-9afb62f4f9d643c7207cd29b96a151d9f7c586eca037cbd3486813822dd96bbc3</originalsourceid><addsrcrecordid>eNotkE9LAzEUxIMoWKsfwFvwHn3J22w2x1LUCgUveg67-WNTuk1N0oN-erfUw_BgmDcDP0LuOTxyAPVUODRKM4D2JMHwgsy4VIJpxO6SzEDIhklEuCY3pWwBgPNOzshisftKOdbNSHMajqXSkDKtG0-HaCff59hTF4vNvnqaDjWO8bevMe3pYXrY-fGWXIV-V_zd_52Tz5fnj-WKrd9f35aLNbNCNJXpPgytCE3Qrm3QKgHKOqEH3fZccqeDsrJrve0BlR0cNl3bceyEcE63w2BxTh7OvdPu99GXarbpmPfTpBG8kSA54hTi55DNqZTsgznkOPb5x3AwJ1DmDMpMkE4SBvEP9qNbug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214505133</pqid></control><display><type>article</type><title>Algorithm robust for the bicriteria discrete optimization problem: Heuristic variations and computational evidence</title><source>ABI/INFORM global</source><source>Springer Link</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Kouvelis, Panos ; Sayın, Serpil</creator><creatorcontrib>Kouvelis, Panos ; Sayın, Serpil</creatorcontrib><description>We apply Algorithm Robust to various problems in multiple objective discrete optimization. Algorithm Robust is a general procedure that is designed to solve bicriteria optimization problems. The algorithm performs a weight space search in which the weights are utilized in min-max type subproblems. In this paper, we experiment with Algorithm Robust on the bicriteria knapsack problem, the bicriteria assignment problem, and the bicriteria minimum cost network flow problem. We look at a heuristic variation that is based on controlling the weight space search and has an indirect control on the sample of efficient solutions generated. We then study another heuristic variation which generates samples of the efficient set with quality guarantees. We report results of computational experiments. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-006-0062-3</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Assignment problem ; Decision making ; Heuristic ; Knapsack problem ; Linear programming ; Network flow problem ; Operations research ; Optimization ; Optimization algorithms ; Studies</subject><ispartof>Annals of operations research, 2006-10, Vol.147 (1), p.71-85</ispartof><rights>Springer Science+Business Media, LLC 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c224t-9afb62f4f9d643c7207cd29b96a151d9f7c586eca037cbd3486813822dd96bbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/214505133/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/214505133?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Kouvelis, Panos</creatorcontrib><creatorcontrib>Sayın, Serpil</creatorcontrib><title>Algorithm robust for the bicriteria discrete optimization problem: Heuristic variations and computational evidence</title><title>Annals of operations research</title><description>We apply Algorithm Robust to various problems in multiple objective discrete optimization. Algorithm Robust is a general procedure that is designed to solve bicriteria optimization problems. The algorithm performs a weight space search in which the weights are utilized in min-max type subproblems. In this paper, we experiment with Algorithm Robust on the bicriteria knapsack problem, the bicriteria assignment problem, and the bicriteria minimum cost network flow problem. We look at a heuristic variation that is based on controlling the weight space search and has an indirect control on the sample of efficient solutions generated. We then study another heuristic variation which generates samples of the efficient set with quality guarantees. We report results of computational experiments. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Assignment problem</subject><subject>Decision making</subject><subject>Heuristic</subject><subject>Knapsack problem</subject><subject>Linear programming</subject><subject>Network flow problem</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Studies</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotkE9LAzEUxIMoWKsfwFvwHn3J22w2x1LUCgUveg67-WNTuk1N0oN-erfUw_BgmDcDP0LuOTxyAPVUODRKM4D2JMHwgsy4VIJpxO6SzEDIhklEuCY3pWwBgPNOzshisftKOdbNSHMajqXSkDKtG0-HaCff59hTF4vNvnqaDjWO8bevMe3pYXrY-fGWXIV-V_zd_52Tz5fnj-WKrd9f35aLNbNCNJXpPgytCE3Qrm3QKgHKOqEH3fZccqeDsrJrve0BlR0cNl3bceyEcE63w2BxTh7OvdPu99GXarbpmPfTpBG8kSA54hTi55DNqZTsgznkOPb5x3AwJ1DmDMpMkE4SBvEP9qNbug</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Kouvelis, Panos</creator><creator>Sayın, Serpil</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20061001</creationdate><title>Algorithm robust for the bicriteria discrete optimization problem</title><author>Kouvelis, Panos ; Sayın, Serpil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-9afb62f4f9d643c7207cd29b96a151d9f7c586eca037cbd3486813822dd96bbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Assignment problem</topic><topic>Decision making</topic><topic>Heuristic</topic><topic>Knapsack problem</topic><topic>Linear programming</topic><topic>Network flow problem</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouvelis, Panos</creatorcontrib><creatorcontrib>Sayın, Serpil</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouvelis, Panos</au><au>Sayın, Serpil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithm robust for the bicriteria discrete optimization problem: Heuristic variations and computational evidence</atitle><jtitle>Annals of operations research</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>147</volume><issue>1</issue><spage>71</spage><epage>85</epage><pages>71-85</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>We apply Algorithm Robust to various problems in multiple objective discrete optimization. Algorithm Robust is a general procedure that is designed to solve bicriteria optimization problems. The algorithm performs a weight space search in which the weights are utilized in min-max type subproblems. In this paper, we experiment with Algorithm Robust on the bicriteria knapsack problem, the bicriteria assignment problem, and the bicriteria minimum cost network flow problem. We look at a heuristic variation that is based on controlling the weight space search and has an indirect control on the sample of efficient solutions generated. We then study another heuristic variation which generates samples of the efficient set with quality guarantees. We report results of computational experiments. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10479-006-0062-3</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2006-10, Vol.147 (1), p.71-85 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_journals_214505133 |
source | ABI/INFORM global; Springer Link; BSC - Ebsco (Business Source Ultimate) |
subjects | Algorithms Assignment problem Decision making Heuristic Knapsack problem Linear programming Network flow problem Operations research Optimization Optimization algorithms Studies |
title | Algorithm robust for the bicriteria discrete optimization problem: Heuristic variations and computational evidence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithm%20robust%20for%20the%20bicriteria%20discrete%20optimization%20problem:%20Heuristic%20variations%20and%20computational%20evidence&rft.jtitle=Annals%20of%20operations%20research&rft.au=Kouvelis,%20Panos&rft.date=2006-10-01&rft.volume=147&rft.issue=1&rft.spage=71&rft.epage=85&rft.pages=71-85&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-006-0062-3&rft_dat=%3Cproquest_cross%3E1141566441%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c224t-9afb62f4f9d643c7207cd29b96a151d9f7c586eca037cbd3486813822dd96bbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214505133&rft_id=info:pmid/&rfr_iscdi=true |