Loading…

Algorithm robust for the bicriteria discrete optimization problem: Heuristic variations and computational evidence

We apply Algorithm Robust to various problems in multiple objective discrete optimization. Algorithm Robust is a general procedure that is designed to solve bicriteria optimization problems. The algorithm performs a weight space search in which the weights are utilized in min-max type subproblems. I...

Full description

Saved in:
Bibliographic Details
Published in:Annals of operations research 2006-10, Vol.147 (1), p.71-85
Main Authors: Kouvelis, Panos, Sayın, Serpil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c224t-9afb62f4f9d643c7207cd29b96a151d9f7c586eca037cbd3486813822dd96bbc3
container_end_page 85
container_issue 1
container_start_page 71
container_title Annals of operations research
container_volume 147
creator Kouvelis, Panos
Sayın, Serpil
description We apply Algorithm Robust to various problems in multiple objective discrete optimization. Algorithm Robust is a general procedure that is designed to solve bicriteria optimization problems. The algorithm performs a weight space search in which the weights are utilized in min-max type subproblems. In this paper, we experiment with Algorithm Robust on the bicriteria knapsack problem, the bicriteria assignment problem, and the bicriteria minimum cost network flow problem. We look at a heuristic variation that is based on controlling the weight space search and has an indirect control on the sample of efficient solutions generated. We then study another heuristic variation which generates samples of the efficient set with quality guarantees. We report results of computational experiments. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s10479-006-0062-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214505133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1141566441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-9afb62f4f9d643c7207cd29b96a151d9f7c586eca037cbd3486813822dd96bbc3</originalsourceid><addsrcrecordid>eNotkE9LAzEUxIMoWKsfwFvwHn3J22w2x1LUCgUveg67-WNTuk1N0oN-erfUw_BgmDcDP0LuOTxyAPVUODRKM4D2JMHwgsy4VIJpxO6SzEDIhklEuCY3pWwBgPNOzshisftKOdbNSHMajqXSkDKtG0-HaCff59hTF4vNvnqaDjWO8bevMe3pYXrY-fGWXIV-V_zd_52Tz5fnj-WKrd9f35aLNbNCNJXpPgytCE3Qrm3QKgHKOqEH3fZccqeDsrJrve0BlR0cNl3bceyEcE63w2BxTh7OvdPu99GXarbpmPfTpBG8kSA54hTi55DNqZTsgznkOPb5x3AwJ1DmDMpMkE4SBvEP9qNbug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214505133</pqid></control><display><type>article</type><title>Algorithm robust for the bicriteria discrete optimization problem: Heuristic variations and computational evidence</title><source>ABI/INFORM global</source><source>Springer Link</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Kouvelis, Panos ; Sayın, Serpil</creator><creatorcontrib>Kouvelis, Panos ; Sayın, Serpil</creatorcontrib><description>We apply Algorithm Robust to various problems in multiple objective discrete optimization. Algorithm Robust is a general procedure that is designed to solve bicriteria optimization problems. The algorithm performs a weight space search in which the weights are utilized in min-max type subproblems. In this paper, we experiment with Algorithm Robust on the bicriteria knapsack problem, the bicriteria assignment problem, and the bicriteria minimum cost network flow problem. We look at a heuristic variation that is based on controlling the weight space search and has an indirect control on the sample of efficient solutions generated. We then study another heuristic variation which generates samples of the efficient set with quality guarantees. We report results of computational experiments. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-006-0062-3</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Assignment problem ; Decision making ; Heuristic ; Knapsack problem ; Linear programming ; Network flow problem ; Operations research ; Optimization ; Optimization algorithms ; Studies</subject><ispartof>Annals of operations research, 2006-10, Vol.147 (1), p.71-85</ispartof><rights>Springer Science+Business Media, LLC 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c224t-9afb62f4f9d643c7207cd29b96a151d9f7c586eca037cbd3486813822dd96bbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/214505133/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/214505133?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Kouvelis, Panos</creatorcontrib><creatorcontrib>Sayın, Serpil</creatorcontrib><title>Algorithm robust for the bicriteria discrete optimization problem: Heuristic variations and computational evidence</title><title>Annals of operations research</title><description>We apply Algorithm Robust to various problems in multiple objective discrete optimization. Algorithm Robust is a general procedure that is designed to solve bicriteria optimization problems. The algorithm performs a weight space search in which the weights are utilized in min-max type subproblems. In this paper, we experiment with Algorithm Robust on the bicriteria knapsack problem, the bicriteria assignment problem, and the bicriteria minimum cost network flow problem. We look at a heuristic variation that is based on controlling the weight space search and has an indirect control on the sample of efficient solutions generated. We then study another heuristic variation which generates samples of the efficient set with quality guarantees. We report results of computational experiments. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Assignment problem</subject><subject>Decision making</subject><subject>Heuristic</subject><subject>Knapsack problem</subject><subject>Linear programming</subject><subject>Network flow problem</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Studies</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotkE9LAzEUxIMoWKsfwFvwHn3J22w2x1LUCgUveg67-WNTuk1N0oN-erfUw_BgmDcDP0LuOTxyAPVUODRKM4D2JMHwgsy4VIJpxO6SzEDIhklEuCY3pWwBgPNOzshisftKOdbNSHMajqXSkDKtG0-HaCff59hTF4vNvnqaDjWO8bevMe3pYXrY-fGWXIV-V_zd_52Tz5fnj-WKrd9f35aLNbNCNJXpPgytCE3Qrm3QKgHKOqEH3fZccqeDsrJrve0BlR0cNl3bceyEcE63w2BxTh7OvdPu99GXarbpmPfTpBG8kSA54hTi55DNqZTsgznkOPb5x3AwJ1DmDMpMkE4SBvEP9qNbug</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Kouvelis, Panos</creator><creator>Sayın, Serpil</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20061001</creationdate><title>Algorithm robust for the bicriteria discrete optimization problem</title><author>Kouvelis, Panos ; Sayın, Serpil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-9afb62f4f9d643c7207cd29b96a151d9f7c586eca037cbd3486813822dd96bbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Assignment problem</topic><topic>Decision making</topic><topic>Heuristic</topic><topic>Knapsack problem</topic><topic>Linear programming</topic><topic>Network flow problem</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouvelis, Panos</creatorcontrib><creatorcontrib>Sayın, Serpil</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouvelis, Panos</au><au>Sayın, Serpil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithm robust for the bicriteria discrete optimization problem: Heuristic variations and computational evidence</atitle><jtitle>Annals of operations research</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>147</volume><issue>1</issue><spage>71</spage><epage>85</epage><pages>71-85</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>We apply Algorithm Robust to various problems in multiple objective discrete optimization. Algorithm Robust is a general procedure that is designed to solve bicriteria optimization problems. The algorithm performs a weight space search in which the weights are utilized in min-max type subproblems. In this paper, we experiment with Algorithm Robust on the bicriteria knapsack problem, the bicriteria assignment problem, and the bicriteria minimum cost network flow problem. We look at a heuristic variation that is based on controlling the weight space search and has an indirect control on the sample of efficient solutions generated. We then study another heuristic variation which generates samples of the efficient set with quality guarantees. We report results of computational experiments. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10479-006-0062-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2006-10, Vol.147 (1), p.71-85
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_214505133
source ABI/INFORM global; Springer Link; BSC - Ebsco (Business Source Ultimate)
subjects Algorithms
Assignment problem
Decision making
Heuristic
Knapsack problem
Linear programming
Network flow problem
Operations research
Optimization
Optimization algorithms
Studies
title Algorithm robust for the bicriteria discrete optimization problem: Heuristic variations and computational evidence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithm%20robust%20for%20the%20bicriteria%20discrete%20optimization%20problem:%20Heuristic%20variations%20and%20computational%20evidence&rft.jtitle=Annals%20of%20operations%20research&rft.au=Kouvelis,%20Panos&rft.date=2006-10-01&rft.volume=147&rft.issue=1&rft.spage=71&rft.epage=85&rft.pages=71-85&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-006-0062-3&rft_dat=%3Cproquest_cross%3E1141566441%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c224t-9afb62f4f9d643c7207cd29b96a151d9f7c586eca037cbd3486813822dd96bbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214505133&rft_id=info:pmid/&rfr_iscdi=true