Loading…

Predictive modeling the internal bond of medium density fiberboard using a modified principal component analysis

In this paper, real-time process data are aligned in time-order with destructive test data to reduce cost by better predictive modeling. A modified principal component analysis (PCA) is used to develop an empirical model to predict the internal bond of MDF based on a selected subset of process varia...

Full description

Saved in:
Bibliographic Details
Published in:Forest products journal 2008-04, Vol.58 (4), p.49-55
Main Authors: Clapp, N.E. Jr, Young, T.M, Guess, F.M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 55
container_issue 4
container_start_page 49
container_title Forest products journal
container_volume 58
creator Clapp, N.E. Jr
Young, T.M
Guess, F.M
description In this paper, real-time process data are aligned in time-order with destructive test data to reduce cost by better predictive modeling. A modified principal component analysis (PCA) is used to develop an empirical model to predict the internal bond of MDF based on a selected subset of process variables. These process variables are selected by picking variables with the highest absolute correlations with internal bond. Our modified PCA is used on these selected standardized process variables to obtain transformed composite variables or modes. The 10 modes are reduced to three using correlation criteria and the three best modes are used to generate an empirical model to predict internal bond. Results for the most produced thickness category of MDF are presented primarily, while some comments are made on two other thickness categories. The root mean square error relative to the mean of each category varied from 9.3 percent to 11.2 percent, which are quite helpful improvements in this manufacturing setting. More attention to the collection of the current process variables via information quality efforts might be useful for additional future improvements. Even though the plant had 179 quantitative process variables, our PCA and correlation analyses suggests some other variable(s) need exploring and collecting to further reduce these error rates. [PUBLICATION ABSTRACT]
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_214609833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A178410780</galeid><sourcerecordid>A178410780</sourcerecordid><originalsourceid>FETCH-LOGICAL-f283t-a50ba5d5ac91acf2769e1f20d618471332f6944f92d4617cec0bcc596bad1d8b3</originalsourceid><addsrcrecordid>eNptj11LwzAUhosoOKe_weB9JR9t0lyO4RcMFHTXJU1Oakab1KQT9u_NmJfjXBw4PM_LeS-KBWWCl5IzcVksMCZ1KSrBroublHYYY1FzuiimjwjG6dn9AhqDgcH5Hs3fgJyfIXo1oC54g4JFY-b2IzLgk5sPyLoOYhdUNGifjpI6-s46MGiKzms3ZVmHcQoe_IxUzjokl26LK6uGBHf_e1lsn5--1q_l5v3lbb3alJY2bC5VjTtVm1ppSZS2VHAJxFJsOGkqQRijlsuqspKaihOhQeNO61ryThlimo4ti4dT7hTDzx7S3O7C_lgotZRUHMuGsQyVJ6hXA7TO2zBHpXvwENWQ_7Yun1dENBXBosGZfzzD5zEwOn1WuD8JVoVW9dGldvtJMWEYS8zrumF_BWaBYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214609833</pqid></control><display><type>article</type><title>Predictive modeling the internal bond of medium density fiberboard using a modified principal component analysis</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><creator>Clapp, N.E. Jr ; Young, T.M ; Guess, F.M</creator><creatorcontrib>Clapp, N.E. Jr ; Young, T.M ; Guess, F.M</creatorcontrib><description>In this paper, real-time process data are aligned in time-order with destructive test data to reduce cost by better predictive modeling. A modified principal component analysis (PCA) is used to develop an empirical model to predict the internal bond of MDF based on a selected subset of process variables. These process variables are selected by picking variables with the highest absolute correlations with internal bond. Our modified PCA is used on these selected standardized process variables to obtain transformed composite variables or modes. The 10 modes are reduced to three using correlation criteria and the three best modes are used to generate an empirical model to predict internal bond. Results for the most produced thickness category of MDF are presented primarily, while some comments are made on two other thickness categories. The root mean square error relative to the mean of each category varied from 9.3 percent to 11.2 percent, which are quite helpful improvements in this manufacturing setting. More attention to the collection of the current process variables via information quality efforts might be useful for additional future improvements. Even though the plant had 179 quantitative process variables, our PCA and correlation analyses suggests some other variable(s) need exploring and collecting to further reduce these error rates. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0015-7473</identifier><identifier>EISSN: 2376-9637</identifier><identifier>CODEN: FPJOAB</identifier><language>eng</language><publisher>Madison: Forest Products Society</publisher><subject>algorithms ; correlation ; Correlation analysis ; Cost control ; Cost reduction ; Data processing ; Eigenvalues ; Eigenvectors ; equations ; Forest products industry ; Influence ; internal bond strength ; Laboratories ; Lumber industry ; Manufacturers ; Manufacturing ; mechanical properties ; medium density fiberboards ; prediction ; Predictive control ; principal component analysis ; Principal components analysis ; process variables ; product quality ; Raw materials ; Real time ; Regression analysis ; Relational data bases ; Sensors ; statistical models ; strength (mechanics) ; Studies ; testing ; thickness ; Variables ; Wood ; Wood composites</subject><ispartof>Forest products journal, 2008-04, Vol.58 (4), p.49-55</ispartof><rights>COPYRIGHT 2008 Forest Products Society</rights><rights>Copyright Forest Products Society Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/214609833?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,36060,44363</link.rule.ids></links><search><creatorcontrib>Clapp, N.E. Jr</creatorcontrib><creatorcontrib>Young, T.M</creatorcontrib><creatorcontrib>Guess, F.M</creatorcontrib><title>Predictive modeling the internal bond of medium density fiberboard using a modified principal component analysis</title><title>Forest products journal</title><description>In this paper, real-time process data are aligned in time-order with destructive test data to reduce cost by better predictive modeling. A modified principal component analysis (PCA) is used to develop an empirical model to predict the internal bond of MDF based on a selected subset of process variables. These process variables are selected by picking variables with the highest absolute correlations with internal bond. Our modified PCA is used on these selected standardized process variables to obtain transformed composite variables or modes. The 10 modes are reduced to three using correlation criteria and the three best modes are used to generate an empirical model to predict internal bond. Results for the most produced thickness category of MDF are presented primarily, while some comments are made on two other thickness categories. The root mean square error relative to the mean of each category varied from 9.3 percent to 11.2 percent, which are quite helpful improvements in this manufacturing setting. More attention to the collection of the current process variables via information quality efforts might be useful for additional future improvements. Even though the plant had 179 quantitative process variables, our PCA and correlation analyses suggests some other variable(s) need exploring and collecting to further reduce these error rates. [PUBLICATION ABSTRACT]</description><subject>algorithms</subject><subject>correlation</subject><subject>Correlation analysis</subject><subject>Cost control</subject><subject>Cost reduction</subject><subject>Data processing</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>equations</subject><subject>Forest products industry</subject><subject>Influence</subject><subject>internal bond strength</subject><subject>Laboratories</subject><subject>Lumber industry</subject><subject>Manufacturers</subject><subject>Manufacturing</subject><subject>mechanical properties</subject><subject>medium density fiberboards</subject><subject>prediction</subject><subject>Predictive control</subject><subject>principal component analysis</subject><subject>Principal components analysis</subject><subject>process variables</subject><subject>product quality</subject><subject>Raw materials</subject><subject>Real time</subject><subject>Regression analysis</subject><subject>Relational data bases</subject><subject>Sensors</subject><subject>statistical models</subject><subject>strength (mechanics)</subject><subject>Studies</subject><subject>testing</subject><subject>thickness</subject><subject>Variables</subject><subject>Wood</subject><subject>Wood composites</subject><issn>0015-7473</issn><issn>2376-9637</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNptj11LwzAUhosoOKe_weB9JR9t0lyO4RcMFHTXJU1Oakab1KQT9u_NmJfjXBw4PM_LeS-KBWWCl5IzcVksMCZ1KSrBroublHYYY1FzuiimjwjG6dn9AhqDgcH5Hs3fgJyfIXo1oC54g4JFY-b2IzLgk5sPyLoOYhdUNGifjpI6-s46MGiKzms3ZVmHcQoe_IxUzjokl26LK6uGBHf_e1lsn5--1q_l5v3lbb3alJY2bC5VjTtVm1ppSZS2VHAJxFJsOGkqQRijlsuqspKaihOhQeNO61ryThlimo4ti4dT7hTDzx7S3O7C_lgotZRUHMuGsQyVJ6hXA7TO2zBHpXvwENWQ_7Yun1dENBXBosGZfzzD5zEwOn1WuD8JVoVW9dGldvtJMWEYS8zrumF_BWaBYw</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Clapp, N.E. Jr</creator><creator>Young, T.M</creator><creator>Guess, F.M</creator><general>Forest Products Society</general><scope>FBQ</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M0K</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>20080401</creationdate><title>Predictive modeling the internal bond of medium density fiberboard using a modified principal component analysis</title><author>Clapp, N.E. Jr ; Young, T.M ; Guess, F.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f283t-a50ba5d5ac91acf2769e1f20d618471332f6944f92d4617cec0bcc596bad1d8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>algorithms</topic><topic>correlation</topic><topic>Correlation analysis</topic><topic>Cost control</topic><topic>Cost reduction</topic><topic>Data processing</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>equations</topic><topic>Forest products industry</topic><topic>Influence</topic><topic>internal bond strength</topic><topic>Laboratories</topic><topic>Lumber industry</topic><topic>Manufacturers</topic><topic>Manufacturing</topic><topic>mechanical properties</topic><topic>medium density fiberboards</topic><topic>prediction</topic><topic>Predictive control</topic><topic>principal component analysis</topic><topic>Principal components analysis</topic><topic>process variables</topic><topic>product quality</topic><topic>Raw materials</topic><topic>Real time</topic><topic>Regression analysis</topic><topic>Relational data bases</topic><topic>Sensors</topic><topic>statistical models</topic><topic>strength (mechanics)</topic><topic>Studies</topic><topic>testing</topic><topic>thickness</topic><topic>Variables</topic><topic>Wood</topic><topic>Wood composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clapp, N.E. Jr</creatorcontrib><creatorcontrib>Young, T.M</creatorcontrib><creatorcontrib>Guess, F.M</creatorcontrib><collection>AGRIS</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Forest products journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clapp, N.E. Jr</au><au>Young, T.M</au><au>Guess, F.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive modeling the internal bond of medium density fiberboard using a modified principal component analysis</atitle><jtitle>Forest products journal</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>58</volume><issue>4</issue><spage>49</spage><epage>55</epage><pages>49-55</pages><issn>0015-7473</issn><eissn>2376-9637</eissn><coden>FPJOAB</coden><abstract>In this paper, real-time process data are aligned in time-order with destructive test data to reduce cost by better predictive modeling. A modified principal component analysis (PCA) is used to develop an empirical model to predict the internal bond of MDF based on a selected subset of process variables. These process variables are selected by picking variables with the highest absolute correlations with internal bond. Our modified PCA is used on these selected standardized process variables to obtain transformed composite variables or modes. The 10 modes are reduced to three using correlation criteria and the three best modes are used to generate an empirical model to predict internal bond. Results for the most produced thickness category of MDF are presented primarily, while some comments are made on two other thickness categories. The root mean square error relative to the mean of each category varied from 9.3 percent to 11.2 percent, which are quite helpful improvements in this manufacturing setting. More attention to the collection of the current process variables via information quality efforts might be useful for additional future improvements. Even though the plant had 179 quantitative process variables, our PCA and correlation analyses suggests some other variable(s) need exploring and collecting to further reduce these error rates. [PUBLICATION ABSTRACT]</abstract><cop>Madison</cop><pub>Forest Products Society</pub><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-7473
ispartof Forest products journal, 2008-04, Vol.58 (4), p.49-55
issn 0015-7473
2376-9637
language eng
recordid cdi_proquest_journals_214609833
source EBSCOhost Business Source Ultimate; ABI/INFORM Global
subjects algorithms
correlation
Correlation analysis
Cost control
Cost reduction
Data processing
Eigenvalues
Eigenvectors
equations
Forest products industry
Influence
internal bond strength
Laboratories
Lumber industry
Manufacturers
Manufacturing
mechanical properties
medium density fiberboards
prediction
Predictive control
principal component analysis
Principal components analysis
process variables
product quality
Raw materials
Real time
Regression analysis
Relational data bases
Sensors
statistical models
strength (mechanics)
Studies
testing
thickness
Variables
Wood
Wood composites
title Predictive modeling the internal bond of medium density fiberboard using a modified principal component analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20modeling%20the%20internal%20bond%20of%20medium%20density%20fiberboard%20using%20a%20modified%20principal%20component%20analysis&rft.jtitle=Forest%20products%20journal&rft.au=Clapp,%20N.E.%20Jr&rft.date=2008-04-01&rft.volume=58&rft.issue=4&rft.spage=49&rft.epage=55&rft.pages=49-55&rft.issn=0015-7473&rft.eissn=2376-9637&rft.coden=FPJOAB&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA178410780%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-f283t-a50ba5d5ac91acf2769e1f20d618471332f6944f92d4617cec0bcc596bad1d8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214609833&rft_id=info:pmid/&rft_galeid=A178410780&rfr_iscdi=true