Loading…
Automated Eigensystem Realization Algorithm for Operational Modal Identification of Bridge Structures
AbstractThe subject of vibration-based structural health monitoring (SHM) has attracted increasing attention, especially in the field of civil engineering. However, the development of these monitoring processes is not a simple task, with user interaction playing a significant role in the extraction...
Saved in:
Published in: | Journal of aerospace engineering 2019-03, Vol.32 (2) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | AbstractThe subject of vibration-based structural health monitoring (SHM) has attracted increasing attention, especially in the field of civil engineering. However, the development of these monitoring processes is not a simple task, with user interaction playing a significant role in the extraction of modal characteristics. In this paper, an automated operational modal analysis methodology based on an eigensystem realization algorithm (ERA) and a two-stage clustering strategy is proposed. Three crucial steps are addressed in this study. In the first phase, ERA is adopted to calculate modes from state-space models of different orders. Subsequently, the dissimilarity of modal parameters is employed as the features of fuzzy C-means (FCM) clustering to separate stable modes from unstable ones. The final step consists of grouping stable modes with similar structural properties to select physical modes. No user-specified parameter is required in the clustering procedure to single out physical modes. A practical bridge example is used to verify that the proposed method can estimate modal parameters effectively in real time. |
---|---|
ISSN: | 0893-1321 1943-5525 |
DOI: | 10.1061/(ASCE)AS.1943-5525.0000984 |