Loading…

Changes in tall shrub abundance on the North Slope of Alaska, 2000–2010

Mapping canopy-forming shrubs in tundra is challenging because approaches that rely on spectral information alone struggle to differentiate low and tall shrubs. We present an evaluation of changes in tall shrub (>0.5 m) fractional cover on the North Slope of Alaska between 2000 and 2010, using a...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2018-12, Vol.219, p.221-232
Main Authors: Duchesne, Rocio R., Chopping, Mark J., Tape, Ken D., Wang, Zhuosen, Schaaf, Crystal L.B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mapping canopy-forming shrubs in tundra is challenging because approaches that rely on spectral information alone struggle to differentiate low and tall shrubs. We present an evaluation of changes in tall shrub (>0.5 m) fractional cover on the North Slope of Alaska between 2000 and 2010, using a new mapping approach that uses satellite imagery from the NASA Multi-angle Imaging SpectroRadiometer (MISR) sensor, ancillary topographic and geographic variables, derived Ross-Li Bidirectional Reflectance Distribution Function (BRDF) kernel (scattering function) weights, and a Boosted Regression Tree (BRT) model. After training and validating the BRT model, 10 predictor variables explained 53% of the variation in tall shrub fractional cover. The isotropic kernel weight from the BRDF model, topographic slope, nadir camera red reflectance, and latitude were the variables that contributed to the model the most as they were used more frequently to generate the regression trees. At a spatial resolution of 250 m, predicted tall shrub fractional cover on the North Slope ranged from 0.00 to 0.21 (RMSE = 0.03), with the vast majority of sites having fractional cover 0.06 was
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2018.10.009