Loading…
Backreaction of super-Hubble cosmological perturbations beyond perturbation theory
We discuss the effect of super-Hubble cosmological fluctuations on the locally measured Hubble expansion rate. We consider a large bare cosmological constant in the early Universe in the presence of scalar field matter (the dominant matter component), which would lead to a scale-invariant primordial...
Saved in:
Published in: | Physical review. D 2018-11, Vol.98 (10), p.103523, Article 103523 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We discuss the effect of super-Hubble cosmological fluctuations on the locally measured Hubble expansion rate. We consider a large bare cosmological constant in the early Universe in the presence of scalar field matter (the dominant matter component), which would lead to a scale-invariant primordial spectrum of cosmological fluctuations. Using the leading-order gradient expansion, we show that the expansion rate measured by a (secondary) clock field which is not comoving with the dominant matter component obtains a negative contribution from infrared fluctuations, a contribution whose absolute value increases in time. This is the same effect that a decreasing cosmological constant would produce. This supports the conclusion that infrared fluctuations lead to a dynamical relaxation of the cosmological constant. Our analysis does not make use of any perturbative expansion in the amplitude of the inhomogeneities. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.98.103523 |