Loading…

Epoxy nanocomposites as matrices for aramid fiber‐reinforced plastics

Rheological and mechanical properties of nanofilled epoxy resin were studied, including adhesion to aramid fibers and strength of impregnated aramid strands. Light scattering and rheological measurements data imply that nanodiamonds (NDs) and multiwall carbon nanotubes form stable nanosized agglomer...

Full description

Saved in:
Bibliographic Details
Published in:Polymer composites 2018-12, Vol.39 (S4), p.E2167-E2174
Main Authors: Ilyin, Sergey O., Brantseva, Tatiana V., Kotomin, Sergey V., Antonov, Sergey V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rheological and mechanical properties of nanofilled epoxy resin were studied, including adhesion to aramid fibers and strength of impregnated aramid strands. Light scattering and rheological measurements data imply that nanodiamonds (NDs) and multiwall carbon nanotubes form stable nanosized agglomerates in epoxy resin, whereas for epoxy‐organomodified montmorillonite systems, individual clay platelets orientation might be present. Also, according to the rheology of these systems, formation of the networks of epoxy molecules adsorbed on the NDs particle surface is suggested. Increase in the viscosity of the epoxy oligomers due to the nanoparticles incorporation results in the worsening of the impregnation of the aramid fibers by these formulations. However, enhanced adhesion properties could be obtained when using nanofillers, with a maximum at 1–2 wt% of nanofillers. A 25–35% growth of the pull‐out adhesion strength is also achieved. Increased cohesive strength and decreased residual stresses are supposed to be the reasons of adhesion strength decrease according to the literature. Adhesion strength increase was accompanied by a 10% enhancement of the strength of impregnated aramid strands. Moreover, a notable effect—up to a fourfold increase—was observed for the impact toughness of epoxy‐nanofillers samples. POLYM. COMPOS., 39:E2167–E2174, 2018. © 2017 Society of Plastics Engineers
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.24515