Loading…
Low-frequency spectroscopy for quantum multilevel systems
A periodically driven quantum system with avoided level crossing experiences both nonadiabatic transitions and wave-function phase changes. These result in coherent interference fringes in the system's occupation probabilities. For qubits, with repelling energy levels, such interference, named...
Saved in:
Published in: | Physical review. B 2018-11, Vol.98 (19), Article 195434 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A periodically driven quantum system with avoided level crossing experiences both nonadiabatic transitions and wave-function phase changes. These result in coherent interference fringes in the system's occupation probabilities. For qubits, with repelling energy levels, such interference, named after Landau-Zener-StĂĽckelberg-Majorana, displays arc-shaped resonance lines. In the case of a multilevel system with an avoided level crossing of the two lower levels, we demonstrate that the shape of the resonances can change from convex arcs to concave heart-shaped and harp-shaped resonance lines. Indeed, the whole energy spectrum determines the shape of such resonance fringes and this also provides insight into the slow-frequency system spectroscopy. As a particular example, we consider this for valley-orbit silicon quantum dots, which are important for the emerging field of valleytronics. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.98.195434 |