Loading…
Energy transport in a disordered spin chain with broken U(1) symmetry: Diffusion, subdiffusion, and many-body localization
We explore the physics of the disordered XYZ spin chain using two complementary numerical techniques: exact diagonalization (ED) on chains of up to 17 spins, and time-evolving block decimation (TEBD) on chains of up to 400 spins. Our principal findings are as follows. First, we verify that the clean...
Saved in:
Published in: | Physical review. B 2018-11, Vol.98 (18), p.180201(R), Article 180201 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-b67602708db05a4e9272988c6afd18f935d91be674ec98ca1e32db0be351b2ae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-b67602708db05a4e9272988c6afd18f935d91be674ec98ca1e32db0be351b2ae3 |
container_end_page | |
container_issue | 18 |
container_start_page | 180201(R) |
container_title | Physical review. B |
container_volume | 98 |
creator | Schulz, M. Taylor, S. R. Hooley, C. A. Scardicchio, A. |
description | We explore the physics of the disordered XYZ spin chain using two complementary numerical techniques: exact diagonalization (ED) on chains of up to 17 spins, and time-evolving block decimation (TEBD) on chains of up to 400 spins. Our principal findings are as follows. First, we verify that the clean XYZ spin chain shows ballistic energy transport for all parameter values that we investigated. Second, for weak disorder there is a stable diffusive region that persists up to a critical disorder strength that depends on the XY anisotropy. Third, for disorder strengths above this critical value, energy transport becomes increasingly subdiffusive. Fourth, the many-body localization transition moves to significantly higher disorder strengths as the XY anisotropy is increased. We discuss these results, and their relation to our current physical picture of subdiffusion in the approach to many-body localization. |
doi_str_mv | 10.1103/PhysRevB.98.180201 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2151201779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2151201779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b67602708db05a4e9272988c6afd18f935d91be674ec98ca1e32db0be351b2ae3</originalsourceid><addsrcrecordid>eNpFkFtLwzAUgIMoOOb-gE8BXxRsTdK1TXzTOS8wUMQ9h6Q5dZ1rUpNW6X69lXl5OdePc-BD6JiSmFKSXDyt-vAMH9ex4DHlhBG6h0ZsmolIiEzs_9UpOUSTENaEEJoRkRMxQtu5Bf_a49YrGxrnW1xZrLCpgvMGPBgcmmFSrNQQP6t2hbV3b2Dx8pSe4dDXNbS-v8Q3VVl2oXL2HIdOm_9OWYNrZftIO9PjjSvUptqqdtgdoYNSbQJMfvIYLW_nL7P7aPF49zC7WkRFQkUb6SzPCMsJN5qkagqC5UxwXmSqNJSXIkmNoBqyfAqF4IWikLAB1ZCkVDMFyRid7O423r13EFq5dp23w0vJaEoHXXkuBortqMK7EDyUsvFVrXwvKZHfmuWvZim43GlOvgCCTHN9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151201779</pqid></control><display><type>article</type><title>Energy transport in a disordered spin chain with broken U(1) symmetry: Diffusion, subdiffusion, and many-body localization</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Schulz, M. ; Taylor, S. R. ; Hooley, C. A. ; Scardicchio, A.</creator><creatorcontrib>Schulz, M. ; Taylor, S. R. ; Hooley, C. A. ; Scardicchio, A.</creatorcontrib><description>We explore the physics of the disordered XYZ spin chain using two complementary numerical techniques: exact diagonalization (ED) on chains of up to 17 spins, and time-evolving block decimation (TEBD) on chains of up to 400 spins. Our principal findings are as follows. First, we verify that the clean XYZ spin chain shows ballistic energy transport for all parameter values that we investigated. Second, for weak disorder there is a stable diffusive region that persists up to a critical disorder strength that depends on the XY anisotropy. Third, for disorder strengths above this critical value, energy transport becomes increasingly subdiffusive. Fourth, the many-body localization transition moves to significantly higher disorder strengths as the XY anisotropy is increased. We discuss these results, and their relation to our current physical picture of subdiffusion in the approach to many-body localization.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.180201</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anisotropy ; Chains ; Clean energy ; Energy transfer ; Localization ; Many body interactions ; Transport</subject><ispartof>Physical review. B, 2018-11, Vol.98 (18), p.180201(R), Article 180201</ispartof><rights>Copyright American Physical Society Nov 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b67602708db05a4e9272988c6afd18f935d91be674ec98ca1e32db0be351b2ae3</citedby><cites>FETCH-LOGICAL-c319t-b67602708db05a4e9272988c6afd18f935d91be674ec98ca1e32db0be351b2ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schulz, M.</creatorcontrib><creatorcontrib>Taylor, S. R.</creatorcontrib><creatorcontrib>Hooley, C. A.</creatorcontrib><creatorcontrib>Scardicchio, A.</creatorcontrib><title>Energy transport in a disordered spin chain with broken U(1) symmetry: Diffusion, subdiffusion, and many-body localization</title><title>Physical review. B</title><description>We explore the physics of the disordered XYZ spin chain using two complementary numerical techniques: exact diagonalization (ED) on chains of up to 17 spins, and time-evolving block decimation (TEBD) on chains of up to 400 spins. Our principal findings are as follows. First, we verify that the clean XYZ spin chain shows ballistic energy transport for all parameter values that we investigated. Second, for weak disorder there is a stable diffusive region that persists up to a critical disorder strength that depends on the XY anisotropy. Third, for disorder strengths above this critical value, energy transport becomes increasingly subdiffusive. Fourth, the many-body localization transition moves to significantly higher disorder strengths as the XY anisotropy is increased. We discuss these results, and their relation to our current physical picture of subdiffusion in the approach to many-body localization.</description><subject>Anisotropy</subject><subject>Chains</subject><subject>Clean energy</subject><subject>Energy transfer</subject><subject>Localization</subject><subject>Many body interactions</subject><subject>Transport</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkFtLwzAUgIMoOOb-gE8BXxRsTdK1TXzTOS8wUMQ9h6Q5dZ1rUpNW6X69lXl5OdePc-BD6JiSmFKSXDyt-vAMH9ex4DHlhBG6h0ZsmolIiEzs_9UpOUSTENaEEJoRkRMxQtu5Bf_a49YrGxrnW1xZrLCpgvMGPBgcmmFSrNQQP6t2hbV3b2Dx8pSe4dDXNbS-v8Q3VVl2oXL2HIdOm_9OWYNrZftIO9PjjSvUptqqdtgdoYNSbQJMfvIYLW_nL7P7aPF49zC7WkRFQkUb6SzPCMsJN5qkagqC5UxwXmSqNJSXIkmNoBqyfAqF4IWikLAB1ZCkVDMFyRid7O423r13EFq5dp23w0vJaEoHXXkuBortqMK7EDyUsvFVrXwvKZHfmuWvZim43GlOvgCCTHN9</recordid><startdate>20181105</startdate><enddate>20181105</enddate><creator>Schulz, M.</creator><creator>Taylor, S. R.</creator><creator>Hooley, C. A.</creator><creator>Scardicchio, A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181105</creationdate><title>Energy transport in a disordered spin chain with broken U(1) symmetry: Diffusion, subdiffusion, and many-body localization</title><author>Schulz, M. ; Taylor, S. R. ; Hooley, C. A. ; Scardicchio, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b67602708db05a4e9272988c6afd18f935d91be674ec98ca1e32db0be351b2ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Chains</topic><topic>Clean energy</topic><topic>Energy transfer</topic><topic>Localization</topic><topic>Many body interactions</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulz, M.</creatorcontrib><creatorcontrib>Taylor, S. R.</creatorcontrib><creatorcontrib>Hooley, C. A.</creatorcontrib><creatorcontrib>Scardicchio, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulz, M.</au><au>Taylor, S. R.</au><au>Hooley, C. A.</au><au>Scardicchio, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy transport in a disordered spin chain with broken U(1) symmetry: Diffusion, subdiffusion, and many-body localization</atitle><jtitle>Physical review. B</jtitle><date>2018-11-05</date><risdate>2018</risdate><volume>98</volume><issue>18</issue><spage>180201(R)</spage><pages>180201(R)-</pages><artnum>180201</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We explore the physics of the disordered XYZ spin chain using two complementary numerical techniques: exact diagonalization (ED) on chains of up to 17 spins, and time-evolving block decimation (TEBD) on chains of up to 400 spins. Our principal findings are as follows. First, we verify that the clean XYZ spin chain shows ballistic energy transport for all parameter values that we investigated. Second, for weak disorder there is a stable diffusive region that persists up to a critical disorder strength that depends on the XY anisotropy. Third, for disorder strengths above this critical value, energy transport becomes increasingly subdiffusive. Fourth, the many-body localization transition moves to significantly higher disorder strengths as the XY anisotropy is increased. We discuss these results, and their relation to our current physical picture of subdiffusion in the approach to many-body localization.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.180201</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2018-11, Vol.98 (18), p.180201(R), Article 180201 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2151201779 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Anisotropy Chains Clean energy Energy transfer Localization Many body interactions Transport |
title | Energy transport in a disordered spin chain with broken U(1) symmetry: Diffusion, subdiffusion, and many-body localization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T23%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20transport%20in%20a%20disordered%20spin%20chain%20with%20broken%20U(1)%20symmetry:%20Diffusion,%20subdiffusion,%20and%20many-body%20localization&rft.jtitle=Physical%20review.%20B&rft.au=Schulz,%20M.&rft.date=2018-11-05&rft.volume=98&rft.issue=18&rft.spage=180201(R)&rft.pages=180201(R)-&rft.artnum=180201&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.180201&rft_dat=%3Cproquest_cross%3E2151201779%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-b67602708db05a4e9272988c6afd18f935d91be674ec98ca1e32db0be351b2ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2151201779&rft_id=info:pmid/&rfr_iscdi=true |