Loading…

Energy transport in a disordered spin chain with broken U(1) symmetry: Diffusion, subdiffusion, and many-body localization

We explore the physics of the disordered XYZ spin chain using two complementary numerical techniques: exact diagonalization (ED) on chains of up to 17 spins, and time-evolving block decimation (TEBD) on chains of up to 400 spins. Our principal findings are as follows. First, we verify that the clean...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2018-11, Vol.98 (18), p.180201(R), Article 180201
Main Authors: Schulz, M., Taylor, S. R., Hooley, C. A., Scardicchio, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-b67602708db05a4e9272988c6afd18f935d91be674ec98ca1e32db0be351b2ae3
cites cdi_FETCH-LOGICAL-c319t-b67602708db05a4e9272988c6afd18f935d91be674ec98ca1e32db0be351b2ae3
container_end_page
container_issue 18
container_start_page 180201(R)
container_title Physical review. B
container_volume 98
creator Schulz, M.
Taylor, S. R.
Hooley, C. A.
Scardicchio, A.
description We explore the physics of the disordered XYZ spin chain using two complementary numerical techniques: exact diagonalization (ED) on chains of up to 17 spins, and time-evolving block decimation (TEBD) on chains of up to 400 spins. Our principal findings are as follows. First, we verify that the clean XYZ spin chain shows ballistic energy transport for all parameter values that we investigated. Second, for weak disorder there is a stable diffusive region that persists up to a critical disorder strength that depends on the XY anisotropy. Third, for disorder strengths above this critical value, energy transport becomes increasingly subdiffusive. Fourth, the many-body localization transition moves to significantly higher disorder strengths as the XY anisotropy is increased. We discuss these results, and their relation to our current physical picture of subdiffusion in the approach to many-body localization.
doi_str_mv 10.1103/PhysRevB.98.180201
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2151201779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2151201779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b67602708db05a4e9272988c6afd18f935d91be674ec98ca1e32db0be351b2ae3</originalsourceid><addsrcrecordid>eNpFkFtLwzAUgIMoOOb-gE8BXxRsTdK1TXzTOS8wUMQ9h6Q5dZ1rUpNW6X69lXl5OdePc-BD6JiSmFKSXDyt-vAMH9ex4DHlhBG6h0ZsmolIiEzs_9UpOUSTENaEEJoRkRMxQtu5Bf_a49YrGxrnW1xZrLCpgvMGPBgcmmFSrNQQP6t2hbV3b2Dx8pSe4dDXNbS-v8Q3VVl2oXL2HIdOm_9OWYNrZftIO9PjjSvUptqqdtgdoYNSbQJMfvIYLW_nL7P7aPF49zC7WkRFQkUb6SzPCMsJN5qkagqC5UxwXmSqNJSXIkmNoBqyfAqF4IWikLAB1ZCkVDMFyRid7O423r13EFq5dp23w0vJaEoHXXkuBortqMK7EDyUsvFVrXwvKZHfmuWvZim43GlOvgCCTHN9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151201779</pqid></control><display><type>article</type><title>Energy transport in a disordered spin chain with broken U(1) symmetry: Diffusion, subdiffusion, and many-body localization</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Schulz, M. ; Taylor, S. R. ; Hooley, C. A. ; Scardicchio, A.</creator><creatorcontrib>Schulz, M. ; Taylor, S. R. ; Hooley, C. A. ; Scardicchio, A.</creatorcontrib><description>We explore the physics of the disordered XYZ spin chain using two complementary numerical techniques: exact diagonalization (ED) on chains of up to 17 spins, and time-evolving block decimation (TEBD) on chains of up to 400 spins. Our principal findings are as follows. First, we verify that the clean XYZ spin chain shows ballistic energy transport for all parameter values that we investigated. Second, for weak disorder there is a stable diffusive region that persists up to a critical disorder strength that depends on the XY anisotropy. Third, for disorder strengths above this critical value, energy transport becomes increasingly subdiffusive. Fourth, the many-body localization transition moves to significantly higher disorder strengths as the XY anisotropy is increased. We discuss these results, and their relation to our current physical picture of subdiffusion in the approach to many-body localization.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.180201</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anisotropy ; Chains ; Clean energy ; Energy transfer ; Localization ; Many body interactions ; Transport</subject><ispartof>Physical review. B, 2018-11, Vol.98 (18), p.180201(R), Article 180201</ispartof><rights>Copyright American Physical Society Nov 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b67602708db05a4e9272988c6afd18f935d91be674ec98ca1e32db0be351b2ae3</citedby><cites>FETCH-LOGICAL-c319t-b67602708db05a4e9272988c6afd18f935d91be674ec98ca1e32db0be351b2ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schulz, M.</creatorcontrib><creatorcontrib>Taylor, S. R.</creatorcontrib><creatorcontrib>Hooley, C. A.</creatorcontrib><creatorcontrib>Scardicchio, A.</creatorcontrib><title>Energy transport in a disordered spin chain with broken U(1) symmetry: Diffusion, subdiffusion, and many-body localization</title><title>Physical review. B</title><description>We explore the physics of the disordered XYZ spin chain using two complementary numerical techniques: exact diagonalization (ED) on chains of up to 17 spins, and time-evolving block decimation (TEBD) on chains of up to 400 spins. Our principal findings are as follows. First, we verify that the clean XYZ spin chain shows ballistic energy transport for all parameter values that we investigated. Second, for weak disorder there is a stable diffusive region that persists up to a critical disorder strength that depends on the XY anisotropy. Third, for disorder strengths above this critical value, energy transport becomes increasingly subdiffusive. Fourth, the many-body localization transition moves to significantly higher disorder strengths as the XY anisotropy is increased. We discuss these results, and their relation to our current physical picture of subdiffusion in the approach to many-body localization.</description><subject>Anisotropy</subject><subject>Chains</subject><subject>Clean energy</subject><subject>Energy transfer</subject><subject>Localization</subject><subject>Many body interactions</subject><subject>Transport</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkFtLwzAUgIMoOOb-gE8BXxRsTdK1TXzTOS8wUMQ9h6Q5dZ1rUpNW6X69lXl5OdePc-BD6JiSmFKSXDyt-vAMH9ex4DHlhBG6h0ZsmolIiEzs_9UpOUSTENaEEJoRkRMxQtu5Bf_a49YrGxrnW1xZrLCpgvMGPBgcmmFSrNQQP6t2hbV3b2Dx8pSe4dDXNbS-v8Q3VVl2oXL2HIdOm_9OWYNrZftIO9PjjSvUptqqdtgdoYNSbQJMfvIYLW_nL7P7aPF49zC7WkRFQkUb6SzPCMsJN5qkagqC5UxwXmSqNJSXIkmNoBqyfAqF4IWikLAB1ZCkVDMFyRid7O423r13EFq5dp23w0vJaEoHXXkuBortqMK7EDyUsvFVrXwvKZHfmuWvZim43GlOvgCCTHN9</recordid><startdate>20181105</startdate><enddate>20181105</enddate><creator>Schulz, M.</creator><creator>Taylor, S. R.</creator><creator>Hooley, C. A.</creator><creator>Scardicchio, A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181105</creationdate><title>Energy transport in a disordered spin chain with broken U(1) symmetry: Diffusion, subdiffusion, and many-body localization</title><author>Schulz, M. ; Taylor, S. R. ; Hooley, C. A. ; Scardicchio, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b67602708db05a4e9272988c6afd18f935d91be674ec98ca1e32db0be351b2ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Chains</topic><topic>Clean energy</topic><topic>Energy transfer</topic><topic>Localization</topic><topic>Many body interactions</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulz, M.</creatorcontrib><creatorcontrib>Taylor, S. R.</creatorcontrib><creatorcontrib>Hooley, C. A.</creatorcontrib><creatorcontrib>Scardicchio, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulz, M.</au><au>Taylor, S. R.</au><au>Hooley, C. A.</au><au>Scardicchio, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy transport in a disordered spin chain with broken U(1) symmetry: Diffusion, subdiffusion, and many-body localization</atitle><jtitle>Physical review. B</jtitle><date>2018-11-05</date><risdate>2018</risdate><volume>98</volume><issue>18</issue><spage>180201(R)</spage><pages>180201(R)-</pages><artnum>180201</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We explore the physics of the disordered XYZ spin chain using two complementary numerical techniques: exact diagonalization (ED) on chains of up to 17 spins, and time-evolving block decimation (TEBD) on chains of up to 400 spins. Our principal findings are as follows. First, we verify that the clean XYZ spin chain shows ballistic energy transport for all parameter values that we investigated. Second, for weak disorder there is a stable diffusive region that persists up to a critical disorder strength that depends on the XY anisotropy. Third, for disorder strengths above this critical value, energy transport becomes increasingly subdiffusive. Fourth, the many-body localization transition moves to significantly higher disorder strengths as the XY anisotropy is increased. We discuss these results, and their relation to our current physical picture of subdiffusion in the approach to many-body localization.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.180201</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-11, Vol.98 (18), p.180201(R), Article 180201
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2151201779
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Anisotropy
Chains
Clean energy
Energy transfer
Localization
Many body interactions
Transport
title Energy transport in a disordered spin chain with broken U(1) symmetry: Diffusion, subdiffusion, and many-body localization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T23%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20transport%20in%20a%20disordered%20spin%20chain%20with%20broken%20U(1)%20symmetry:%20Diffusion,%20subdiffusion,%20and%20many-body%20localization&rft.jtitle=Physical%20review.%20B&rft.au=Schulz,%20M.&rft.date=2018-11-05&rft.volume=98&rft.issue=18&rft.spage=180201(R)&rft.pages=180201(R)-&rft.artnum=180201&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.180201&rft_dat=%3Cproquest_cross%3E2151201779%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-b67602708db05a4e9272988c6afd18f935d91be674ec98ca1e32db0be351b2ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2151201779&rft_id=info:pmid/&rfr_iscdi=true