Loading…

Shape Constrained Density Estimation Via Penalized Rényi Divergence

Shape constraints play an increasingly prominent role in nonparametric function estimation. While considerable recent attention has been focused on log concavity as a regularizing device in nonparametric density estimation, weaker forms of concavity constraints encompassing larger classes of densiti...

Full description

Saved in:
Bibliographic Details
Published in:Statistical science 2018-11, Vol.33 (4), p.510-526
Main Authors: Koenker, Roger, Mizera, Ivan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c314t-e8aa9bb569acd45860ee16219cd23d9887aafd798fcc012b54aae8426ddcb78d3
cites cdi_FETCH-LOGICAL-c314t-e8aa9bb569acd45860ee16219cd23d9887aafd798fcc012b54aae8426ddcb78d3
container_end_page 526
container_issue 4
container_start_page 510
container_title Statistical science
container_volume 33
creator Koenker, Roger
Mizera, Ivan
description Shape constraints play an increasingly prominent role in nonparametric function estimation. While considerable recent attention has been focused on log concavity as a regularizing device in nonparametric density estimation, weaker forms of concavity constraints encompassing larger classes of densities have received less attention but offer some additional flexibility. Heavier tail behavior and sharper modal peaks are better adapted to such weaker concavity constraints. When paired with appropriate maximal entropy estimation criteria, these weaker constraints yield tractable, convex optimization problems that broaden the scope of shape constrained density estimation in a variety of applied subject areas. In contrast to our prior work, Koenker and Mizera [Ann. Statist. 38 (2010) 2998–3027], that focused on the log concave (α = 1) and Hellinger (α = 1/2) constraints, here we describe methods enabling imposition of even weaker, α ≤ 0 constraints. An alternative formulation of the concavity constraints for densities in dimension d ≥ 2 also significantly expands the applicability of our proposed methods for multivariate data. Finally, we illustrate the use of the Rényi divergence criterion for norm-constrained estimation of densities in the absence of a shape constraint.
doi_str_mv 10.1214/18-STS658
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2151202459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26771017</jstor_id><sourcerecordid>26771017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-e8aa9bb569acd45860ee16219cd23d9887aafd798fcc012b54aae8426ddcb78d3</originalsourceid><addsrcrecordid>eNo90MtKAzEUBuAgCtbLwgcQBly5GM3J5DZLaesFCoqtbkMmyWhKzdQkFeob-Ry-mCMjrv7Nx885P0IngC-AAL0EWc4Xc87kDhoR4LKUgrJdNMJSViUlldhHByktMcaMAx2hyfxVr10x7kLKUfvgbDFxIfm8LaYp-zedfReKZ6-LBxf0yn_24PH7K2x9MfEfLr64YNwR2mv1KrnjvzxET9fTxfi2nN3f3I2vZqWpgObSSa3rpmG81sZSJjl2DjiB2lhS2VpKoXVrRS1bYzCQhlGtnaSEW2saIW11iM6G3nXs3jcuZbXsNrE_KykCDAgmlNW9Oh-UiV1K0bVqHftH4lYBVr8jKZBqGKm3p4NdptzFf0i4EIBBVD8BsmPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151202459</pqid></control><display><type>article</type><title>Shape Constrained Density Estimation Via Penalized Rényi Divergence</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Koenker, Roger ; Mizera, Ivan</creator><creatorcontrib>Koenker, Roger ; Mizera, Ivan</creatorcontrib><description>Shape constraints play an increasingly prominent role in nonparametric function estimation. While considerable recent attention has been focused on log concavity as a regularizing device in nonparametric density estimation, weaker forms of concavity constraints encompassing larger classes of densities have received less attention but offer some additional flexibility. Heavier tail behavior and sharper modal peaks are better adapted to such weaker concavity constraints. When paired with appropriate maximal entropy estimation criteria, these weaker constraints yield tractable, convex optimization problems that broaden the scope of shape constrained density estimation in a variety of applied subject areas. In contrast to our prior work, Koenker and Mizera [Ann. Statist. 38 (2010) 2998–3027], that focused on the log concave (α = 1) and Hellinger (α = 1/2) constraints, here we describe methods enabling imposition of even weaker, α ≤ 0 constraints. An alternative formulation of the concavity constraints for densities in dimension d ≥ 2 also significantly expands the applicability of our proposed methods for multivariate data. Finally, we illustrate the use of the Rényi divergence criterion for norm-constrained estimation of densities in the absence of a shape constraint.</description><identifier>ISSN: 0883-4237</identifier><identifier>EISSN: 2168-8745</identifier><identifier>DOI: 10.1214/18-STS658</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Concavity ; Constraints ; Convexity ; Density ; Divergence ; Estimating techniques ; Maximum entropy method ; Multivariate analysis ; Statistical analysis</subject><ispartof>Statistical science, 2018-11, Vol.33 (4), p.510-526</ispartof><rights>Institute of Mathematical Statistics, 2018</rights><rights>Copyright Institute of Mathematical Statistics Nov 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-e8aa9bb569acd45860ee16219cd23d9887aafd798fcc012b54aae8426ddcb78d3</citedby><cites>FETCH-LOGICAL-c314t-e8aa9bb569acd45860ee16219cd23d9887aafd798fcc012b54aae8426ddcb78d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26771017$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26771017$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids></links><search><creatorcontrib>Koenker, Roger</creatorcontrib><creatorcontrib>Mizera, Ivan</creatorcontrib><title>Shape Constrained Density Estimation Via Penalized Rényi Divergence</title><title>Statistical science</title><description>Shape constraints play an increasingly prominent role in nonparametric function estimation. While considerable recent attention has been focused on log concavity as a regularizing device in nonparametric density estimation, weaker forms of concavity constraints encompassing larger classes of densities have received less attention but offer some additional flexibility. Heavier tail behavior and sharper modal peaks are better adapted to such weaker concavity constraints. When paired with appropriate maximal entropy estimation criteria, these weaker constraints yield tractable, convex optimization problems that broaden the scope of shape constrained density estimation in a variety of applied subject areas. In contrast to our prior work, Koenker and Mizera [Ann. Statist. 38 (2010) 2998–3027], that focused on the log concave (α = 1) and Hellinger (α = 1/2) constraints, here we describe methods enabling imposition of even weaker, α ≤ 0 constraints. An alternative formulation of the concavity constraints for densities in dimension d ≥ 2 also significantly expands the applicability of our proposed methods for multivariate data. Finally, we illustrate the use of the Rényi divergence criterion for norm-constrained estimation of densities in the absence of a shape constraint.</description><subject>Concavity</subject><subject>Constraints</subject><subject>Convexity</subject><subject>Density</subject><subject>Divergence</subject><subject>Estimating techniques</subject><subject>Maximum entropy method</subject><subject>Multivariate analysis</subject><subject>Statistical analysis</subject><issn>0883-4237</issn><issn>2168-8745</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo90MtKAzEUBuAgCtbLwgcQBly5GM3J5DZLaesFCoqtbkMmyWhKzdQkFeob-Ry-mCMjrv7Nx885P0IngC-AAL0EWc4Xc87kDhoR4LKUgrJdNMJSViUlldhHByktMcaMAx2hyfxVr10x7kLKUfvgbDFxIfm8LaYp-zedfReKZ6-LBxf0yn_24PH7K2x9MfEfLr64YNwR2mv1KrnjvzxET9fTxfi2nN3f3I2vZqWpgObSSa3rpmG81sZSJjl2DjiB2lhS2VpKoXVrRS1bYzCQhlGtnaSEW2saIW11iM6G3nXs3jcuZbXsNrE_KykCDAgmlNW9Oh-UiV1K0bVqHftH4lYBVr8jKZBqGKm3p4NdptzFf0i4EIBBVD8BsmPw</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Koenker, Roger</creator><creator>Mizera, Ivan</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Shape Constrained Density Estimation Via Penalized Rényi Divergence</title><author>Koenker, Roger ; Mizera, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-e8aa9bb569acd45860ee16219cd23d9887aafd798fcc012b54aae8426ddcb78d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Concavity</topic><topic>Constraints</topic><topic>Convexity</topic><topic>Density</topic><topic>Divergence</topic><topic>Estimating techniques</topic><topic>Maximum entropy method</topic><topic>Multivariate analysis</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koenker, Roger</creatorcontrib><creatorcontrib>Mizera, Ivan</creatorcontrib><collection>CrossRef</collection><jtitle>Statistical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koenker, Roger</au><au>Mizera, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape Constrained Density Estimation Via Penalized Rényi Divergence</atitle><jtitle>Statistical science</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>33</volume><issue>4</issue><spage>510</spage><epage>526</epage><pages>510-526</pages><issn>0883-4237</issn><eissn>2168-8745</eissn><abstract>Shape constraints play an increasingly prominent role in nonparametric function estimation. While considerable recent attention has been focused on log concavity as a regularizing device in nonparametric density estimation, weaker forms of concavity constraints encompassing larger classes of densities have received less attention but offer some additional flexibility. Heavier tail behavior and sharper modal peaks are better adapted to such weaker concavity constraints. When paired with appropriate maximal entropy estimation criteria, these weaker constraints yield tractable, convex optimization problems that broaden the scope of shape constrained density estimation in a variety of applied subject areas. In contrast to our prior work, Koenker and Mizera [Ann. Statist. 38 (2010) 2998–3027], that focused on the log concave (α = 1) and Hellinger (α = 1/2) constraints, here we describe methods enabling imposition of even weaker, α ≤ 0 constraints. An alternative formulation of the concavity constraints for densities in dimension d ≥ 2 also significantly expands the applicability of our proposed methods for multivariate data. Finally, we illustrate the use of the Rényi divergence criterion for norm-constrained estimation of densities in the absence of a shape constraint.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/18-STS658</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-4237
ispartof Statistical science, 2018-11, Vol.33 (4), p.510-526
issn 0883-4237
2168-8745
language eng
recordid cdi_proquest_journals_2151202459
source JSTOR Archival Journals and Primary Sources Collection
subjects Concavity
Constraints
Convexity
Density
Divergence
Estimating techniques
Maximum entropy method
Multivariate analysis
Statistical analysis
title Shape Constrained Density Estimation Via Penalized Rényi Divergence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20Constrained%20Density%20Estimation%20Via%20Penalized%20R%C3%A9nyi%20Divergence&rft.jtitle=Statistical%20science&rft.au=Koenker,%20Roger&rft.date=2018-11-01&rft.volume=33&rft.issue=4&rft.spage=510&rft.epage=526&rft.pages=510-526&rft.issn=0883-4237&rft.eissn=2168-8745&rft_id=info:doi/10.1214/18-STS658&rft_dat=%3Cjstor_proqu%3E26771017%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-e8aa9bb569acd45860ee16219cd23d9887aafd798fcc012b54aae8426ddcb78d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2151202459&rft_id=info:pmid/&rft_jstor_id=26771017&rfr_iscdi=true