Loading…
Head-On Collison of a Planar Shock Wave with Deformable Porous Foams
Two-dimensional physical and numerical models for predicting the characteristics of the flowfield during an unsteady interaction between a planar shock wave moving through air and a deformable saturated porous material were developed using the representative-elementary-volume approach. The numerical...
Saved in:
Published in: | AIAA journal 2005-08, Vol.43 (8), p.1776 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two-dimensional physical and numerical models for predicting the characteristics of the flowfield during an unsteady interaction between a planar shock wave moving through air and a deformable saturated porous material were developed using the representative-elementary-volume approach. The numerical model is based on a twophase arbitrary Lagrangian Eulerian finite difference scheme to solve the flowfield governing equations. The multidimensional effects of the head-on collision were investigated. The physical model is validated by comparing the numerical predictions qualitatively and quantitatively to one- and two-dimensional shock-foam interaction experimental results. Good agreement was obtained both in one- and two-dimensional cases. It was found that wall friction results in shear bands (i.e., localized high vorticity), which affects the flowfield characteristics. Therefore, the common one-dimensional models are not valid in the vicinity of the shock tube sidewalls. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0001-1452 1533-385X |