Loading…

Hydrogen economy of the fuel cell hybrid power system optimized by air flow control to mitigate the effect of the uncertainty about available renewable power and load dynamics

•Fuel economy for the Fuel Cell Hybrid Power Systems is analyzed.•6 kW Fuel Cell under Static Feed-Forward strategy is the reference.•Fuel economy could increase up to 11.8 L using an optimized air flow control.•The uncertainty on load dynamic is mitigated using the Load-Following control.•Fuel econ...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management 2019-01, Vol.179, p.152-165
Main Authors: Bizon, Nicu, Lopez-Guede, Jose Manuel, Kurt, Erol, Thounthong, Phatiphat, Mazare, Alin Gheorghita, Ionescu, Laurentiu Mihai, Iana, Gabriel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-c78d06e41149f670b91d83b06cc993784570d0674b0db4a4ad81c47d0e5973063
cites cdi_FETCH-LOGICAL-c379t-c78d06e41149f670b91d83b06cc993784570d0674b0db4a4ad81c47d0e5973063
container_end_page 165
container_issue
container_start_page 152
container_title Energy conversion and management
container_volume 179
creator Bizon, Nicu
Lopez-Guede, Jose Manuel
Kurt, Erol
Thounthong, Phatiphat
Mazare, Alin Gheorghita
Ionescu, Laurentiu Mihai
Iana, Gabriel
description •Fuel economy for the Fuel Cell Hybrid Power Systems is analyzed.•6 kW Fuel Cell under Static Feed-Forward strategy is the reference.•Fuel economy could increase up to 11.8 L using an optimized air flow control.•The uncertainty on load dynamic is mitigated using the Load-Following control.•Fuel economy is obtained in the entire range of load and available renewable power. A new Energy Management Strategy to reduce the hydrogen consumption is proposed for Hybrid Power Systems based on Proton Exchange Membrane Fuel Cell system used as backup source. The Energy Management Strategy uses a Load Following control loop of requested load demand on DC bus and an optimization control loop to improve the fuel economy based on the Global Extremum Seeking algorithm applied to the air flow rate. The performance of proposed strategy is compared to the one obtained with the Static Feed-Forward strategy considering three case studies for the optimization function used in different scenarios for power flow on DC bus (variable or constant load demand, without or with variable renewable energy power).
doi_str_mv 10.1016/j.enconman.2018.10.058
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2153601070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890418311798</els_id><sourcerecordid>2153601070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-c78d06e41149f670b91d83b06cc993784570d0674b0db4a4ad81c47d0e5973063</originalsourceid><addsrcrecordid>eNqFkc9uFDEMxkcIJJbCKyBLnGdx5l8mN1AFLVIlLnCOMomnzSqTLEmmq-GleEWyXXrmZMv6vp9lf1X1nuGeIRs-HvbkdfCL8vsG2ViGe-zHF9WOjVzUTdPwl9UOmRjqUWD3unqT0gER2x6HXfXndjMx3JMHKoywbBBmyA8E80oONDkHD9sUrYFjOFGEtKVMC4Rjtov9TQamDZSNMLtwgkLIMTjIARab7b3K9MSieSadn8mr1xSzsj4X6xTWDOpRWacmRxDJ0-mpu6xT3oALyoDZvFqsTm-rV7Nyid79q1fVz69fflzf1nffb75df76rdctFrjUfDQ7UMdaJeeA4CWbGdsJBayFaPnY9xyLg3YRm6lSnzMh0xw1SL3iLQ3tVfbhwjzH8WilleQhr9GWlbFjfDsiQY1ENF5WOIaVIszxGu6i4SYbyHI48yOdw5Dmc87yEU4yfLkYqNzxaijJpW5RkbCyvkibY_yH-AnEanxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153601070</pqid></control><display><type>article</type><title>Hydrogen economy of the fuel cell hybrid power system optimized by air flow control to mitigate the effect of the uncertainty about available renewable power and load dynamics</title><source>ScienceDirect Freedom Collection</source><creator>Bizon, Nicu ; Lopez-Guede, Jose Manuel ; Kurt, Erol ; Thounthong, Phatiphat ; Mazare, Alin Gheorghita ; Ionescu, Laurentiu Mihai ; Iana, Gabriel</creator><creatorcontrib>Bizon, Nicu ; Lopez-Guede, Jose Manuel ; Kurt, Erol ; Thounthong, Phatiphat ; Mazare, Alin Gheorghita ; Ionescu, Laurentiu Mihai ; Iana, Gabriel</creatorcontrib><description>•Fuel economy for the Fuel Cell Hybrid Power Systems is analyzed.•6 kW Fuel Cell under Static Feed-Forward strategy is the reference.•Fuel economy could increase up to 11.8 L using an optimized air flow control.•The uncertainty on load dynamic is mitigated using the Load-Following control.•Fuel economy is obtained in the entire range of load and available renewable power. A new Energy Management Strategy to reduce the hydrogen consumption is proposed for Hybrid Power Systems based on Proton Exchange Membrane Fuel Cell system used as backup source. The Energy Management Strategy uses a Load Following control loop of requested load demand on DC bus and an optimization control loop to improve the fuel economy based on the Global Extremum Seeking algorithm applied to the air flow rate. The performance of proposed strategy is compared to the one obtained with the Static Feed-Forward strategy considering three case studies for the optimization function used in different scenarios for power flow on DC bus (variable or constant load demand, without or with variable renewable energy power).</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2018.10.058</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Air flow ; Air flow control ; Alternative energy ; Case studies ; Data buses ; Energy ; Energy management ; Flow control ; Flow rates ; Flow velocity ; Fuel cells ; Fuel economy ; Fuel technology ; Global Extremum Seeking ; Hybrid systems ; Hydrogen ; Hydrogen economy ; Hydrogen-based energy ; Load Following ; Loads (forces) ; Optimization ; Power consumption ; Power flow ; Power variability mitigation ; Proton Exchange Membrane Fuel Cell ; Proton exchange membrane fuel cells ; Renewable energy ; Strategy</subject><ispartof>Energy conversion and management, 2019-01, Vol.179, p.152-165</ispartof><rights>2018</rights><rights>Copyright Elsevier Science Ltd. Jan 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-c78d06e41149f670b91d83b06cc993784570d0674b0db4a4ad81c47d0e5973063</citedby><cites>FETCH-LOGICAL-c379t-c78d06e41149f670b91d83b06cc993784570d0674b0db4a4ad81c47d0e5973063</cites><orcidid>0000-0001-9311-7598 ; 0000-0002-5310-1601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bizon, Nicu</creatorcontrib><creatorcontrib>Lopez-Guede, Jose Manuel</creatorcontrib><creatorcontrib>Kurt, Erol</creatorcontrib><creatorcontrib>Thounthong, Phatiphat</creatorcontrib><creatorcontrib>Mazare, Alin Gheorghita</creatorcontrib><creatorcontrib>Ionescu, Laurentiu Mihai</creatorcontrib><creatorcontrib>Iana, Gabriel</creatorcontrib><title>Hydrogen economy of the fuel cell hybrid power system optimized by air flow control to mitigate the effect of the uncertainty about available renewable power and load dynamics</title><title>Energy conversion and management</title><description>•Fuel economy for the Fuel Cell Hybrid Power Systems is analyzed.•6 kW Fuel Cell under Static Feed-Forward strategy is the reference.•Fuel economy could increase up to 11.8 L using an optimized air flow control.•The uncertainty on load dynamic is mitigated using the Load-Following control.•Fuel economy is obtained in the entire range of load and available renewable power. A new Energy Management Strategy to reduce the hydrogen consumption is proposed for Hybrid Power Systems based on Proton Exchange Membrane Fuel Cell system used as backup source. The Energy Management Strategy uses a Load Following control loop of requested load demand on DC bus and an optimization control loop to improve the fuel economy based on the Global Extremum Seeking algorithm applied to the air flow rate. The performance of proposed strategy is compared to the one obtained with the Static Feed-Forward strategy considering three case studies for the optimization function used in different scenarios for power flow on DC bus (variable or constant load demand, without or with variable renewable energy power).</description><subject>Air flow</subject><subject>Air flow control</subject><subject>Alternative energy</subject><subject>Case studies</subject><subject>Data buses</subject><subject>Energy</subject><subject>Energy management</subject><subject>Flow control</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fuel cells</subject><subject>Fuel economy</subject><subject>Fuel technology</subject><subject>Global Extremum Seeking</subject><subject>Hybrid systems</subject><subject>Hydrogen</subject><subject>Hydrogen economy</subject><subject>Hydrogen-based energy</subject><subject>Load Following</subject><subject>Loads (forces)</subject><subject>Optimization</subject><subject>Power consumption</subject><subject>Power flow</subject><subject>Power variability mitigation</subject><subject>Proton Exchange Membrane Fuel Cell</subject><subject>Proton exchange membrane fuel cells</subject><subject>Renewable energy</subject><subject>Strategy</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc9uFDEMxkcIJJbCKyBLnGdx5l8mN1AFLVIlLnCOMomnzSqTLEmmq-GleEWyXXrmZMv6vp9lf1X1nuGeIRs-HvbkdfCL8vsG2ViGe-zHF9WOjVzUTdPwl9UOmRjqUWD3unqT0gER2x6HXfXndjMx3JMHKoywbBBmyA8E80oONDkHD9sUrYFjOFGEtKVMC4Rjtov9TQamDZSNMLtwgkLIMTjIARab7b3K9MSieSadn8mr1xSzsj4X6xTWDOpRWacmRxDJ0-mpu6xT3oALyoDZvFqsTm-rV7Nyid79q1fVz69fflzf1nffb75df76rdctFrjUfDQ7UMdaJeeA4CWbGdsJBayFaPnY9xyLg3YRm6lSnzMh0xw1SL3iLQ3tVfbhwjzH8WilleQhr9GWlbFjfDsiQY1ENF5WOIaVIszxGu6i4SYbyHI48yOdw5Dmc87yEU4yfLkYqNzxaijJpW5RkbCyvkibY_yH-AnEanxI</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Bizon, Nicu</creator><creator>Lopez-Guede, Jose Manuel</creator><creator>Kurt, Erol</creator><creator>Thounthong, Phatiphat</creator><creator>Mazare, Alin Gheorghita</creator><creator>Ionescu, Laurentiu Mihai</creator><creator>Iana, Gabriel</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9311-7598</orcidid><orcidid>https://orcid.org/0000-0002-5310-1601</orcidid></search><sort><creationdate>20190101</creationdate><title>Hydrogen economy of the fuel cell hybrid power system optimized by air flow control to mitigate the effect of the uncertainty about available renewable power and load dynamics</title><author>Bizon, Nicu ; Lopez-Guede, Jose Manuel ; Kurt, Erol ; Thounthong, Phatiphat ; Mazare, Alin Gheorghita ; Ionescu, Laurentiu Mihai ; Iana, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-c78d06e41149f670b91d83b06cc993784570d0674b0db4a4ad81c47d0e5973063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air flow</topic><topic>Air flow control</topic><topic>Alternative energy</topic><topic>Case studies</topic><topic>Data buses</topic><topic>Energy</topic><topic>Energy management</topic><topic>Flow control</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fuel cells</topic><topic>Fuel economy</topic><topic>Fuel technology</topic><topic>Global Extremum Seeking</topic><topic>Hybrid systems</topic><topic>Hydrogen</topic><topic>Hydrogen economy</topic><topic>Hydrogen-based energy</topic><topic>Load Following</topic><topic>Loads (forces)</topic><topic>Optimization</topic><topic>Power consumption</topic><topic>Power flow</topic><topic>Power variability mitigation</topic><topic>Proton Exchange Membrane Fuel Cell</topic><topic>Proton exchange membrane fuel cells</topic><topic>Renewable energy</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bizon, Nicu</creatorcontrib><creatorcontrib>Lopez-Guede, Jose Manuel</creatorcontrib><creatorcontrib>Kurt, Erol</creatorcontrib><creatorcontrib>Thounthong, Phatiphat</creatorcontrib><creatorcontrib>Mazare, Alin Gheorghita</creatorcontrib><creatorcontrib>Ionescu, Laurentiu Mihai</creatorcontrib><creatorcontrib>Iana, Gabriel</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bizon, Nicu</au><au>Lopez-Guede, Jose Manuel</au><au>Kurt, Erol</au><au>Thounthong, Phatiphat</au><au>Mazare, Alin Gheorghita</au><au>Ionescu, Laurentiu Mihai</au><au>Iana, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen economy of the fuel cell hybrid power system optimized by air flow control to mitigate the effect of the uncertainty about available renewable power and load dynamics</atitle><jtitle>Energy conversion and management</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>179</volume><spage>152</spage><epage>165</epage><pages>152-165</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•Fuel economy for the Fuel Cell Hybrid Power Systems is analyzed.•6 kW Fuel Cell under Static Feed-Forward strategy is the reference.•Fuel economy could increase up to 11.8 L using an optimized air flow control.•The uncertainty on load dynamic is mitigated using the Load-Following control.•Fuel economy is obtained in the entire range of load and available renewable power. A new Energy Management Strategy to reduce the hydrogen consumption is proposed for Hybrid Power Systems based on Proton Exchange Membrane Fuel Cell system used as backup source. The Energy Management Strategy uses a Load Following control loop of requested load demand on DC bus and an optimization control loop to improve the fuel economy based on the Global Extremum Seeking algorithm applied to the air flow rate. The performance of proposed strategy is compared to the one obtained with the Static Feed-Forward strategy considering three case studies for the optimization function used in different scenarios for power flow on DC bus (variable or constant load demand, without or with variable renewable energy power).</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2018.10.058</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9311-7598</orcidid><orcidid>https://orcid.org/0000-0002-5310-1601</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2019-01, Vol.179, p.152-165
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2153601070
source ScienceDirect Freedom Collection
subjects Air flow
Air flow control
Alternative energy
Case studies
Data buses
Energy
Energy management
Flow control
Flow rates
Flow velocity
Fuel cells
Fuel economy
Fuel technology
Global Extremum Seeking
Hybrid systems
Hydrogen
Hydrogen economy
Hydrogen-based energy
Load Following
Loads (forces)
Optimization
Power consumption
Power flow
Power variability mitigation
Proton Exchange Membrane Fuel Cell
Proton exchange membrane fuel cells
Renewable energy
Strategy
title Hydrogen economy of the fuel cell hybrid power system optimized by air flow control to mitigate the effect of the uncertainty about available renewable power and load dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20economy%20of%20the%20fuel%20cell%20hybrid%20power%20system%20optimized%20by%20air%20flow%20control%20to%20mitigate%20the%20effect%20of%20the%20uncertainty%20about%20available%20renewable%20power%20and%20load%20dynamics&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Bizon,%20Nicu&rft.date=2019-01-01&rft.volume=179&rft.spage=152&rft.epage=165&rft.pages=152-165&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2018.10.058&rft_dat=%3Cproquest_cross%3E2153601070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-c78d06e41149f670b91d83b06cc993784570d0674b0db4a4ad81c47d0e5973063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2153601070&rft_id=info:pmid/&rfr_iscdi=true