Loading…
Hydrogen economy of the fuel cell hybrid power system optimized by air flow control to mitigate the effect of the uncertainty about available renewable power and load dynamics
•Fuel economy for the Fuel Cell Hybrid Power Systems is analyzed.•6 kW Fuel Cell under Static Feed-Forward strategy is the reference.•Fuel economy could increase up to 11.8 L using an optimized air flow control.•The uncertainty on load dynamic is mitigated using the Load-Following control.•Fuel econ...
Saved in:
Published in: | Energy conversion and management 2019-01, Vol.179, p.152-165 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-c78d06e41149f670b91d83b06cc993784570d0674b0db4a4ad81c47d0e5973063 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-c78d06e41149f670b91d83b06cc993784570d0674b0db4a4ad81c47d0e5973063 |
container_end_page | 165 |
container_issue | |
container_start_page | 152 |
container_title | Energy conversion and management |
container_volume | 179 |
creator | Bizon, Nicu Lopez-Guede, Jose Manuel Kurt, Erol Thounthong, Phatiphat Mazare, Alin Gheorghita Ionescu, Laurentiu Mihai Iana, Gabriel |
description | •Fuel economy for the Fuel Cell Hybrid Power Systems is analyzed.•6 kW Fuel Cell under Static Feed-Forward strategy is the reference.•Fuel economy could increase up to 11.8 L using an optimized air flow control.•The uncertainty on load dynamic is mitigated using the Load-Following control.•Fuel economy is obtained in the entire range of load and available renewable power.
A new Energy Management Strategy to reduce the hydrogen consumption is proposed for Hybrid Power Systems based on Proton Exchange Membrane Fuel Cell system used as backup source. The Energy Management Strategy uses a Load Following control loop of requested load demand on DC bus and an optimization control loop to improve the fuel economy based on the Global Extremum Seeking algorithm applied to the air flow rate. The performance of proposed strategy is compared to the one obtained with the Static Feed-Forward strategy considering three case studies for the optimization function used in different scenarios for power flow on DC bus (variable or constant load demand, without or with variable renewable energy power). |
doi_str_mv | 10.1016/j.enconman.2018.10.058 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2153601070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890418311798</els_id><sourcerecordid>2153601070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-c78d06e41149f670b91d83b06cc993784570d0674b0db4a4ad81c47d0e5973063</originalsourceid><addsrcrecordid>eNqFkc9uFDEMxkcIJJbCKyBLnGdx5l8mN1AFLVIlLnCOMomnzSqTLEmmq-GleEWyXXrmZMv6vp9lf1X1nuGeIRs-HvbkdfCL8vsG2ViGe-zHF9WOjVzUTdPwl9UOmRjqUWD3unqT0gER2x6HXfXndjMx3JMHKoywbBBmyA8E80oONDkHD9sUrYFjOFGEtKVMC4Rjtov9TQamDZSNMLtwgkLIMTjIARab7b3K9MSieSadn8mr1xSzsj4X6xTWDOpRWacmRxDJ0-mpu6xT3oALyoDZvFqsTm-rV7Nyid79q1fVz69fflzf1nffb75df76rdctFrjUfDQ7UMdaJeeA4CWbGdsJBayFaPnY9xyLg3YRm6lSnzMh0xw1SL3iLQ3tVfbhwjzH8WilleQhr9GWlbFjfDsiQY1ENF5WOIaVIszxGu6i4SYbyHI48yOdw5Dmc87yEU4yfLkYqNzxaijJpW5RkbCyvkibY_yH-AnEanxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153601070</pqid></control><display><type>article</type><title>Hydrogen economy of the fuel cell hybrid power system optimized by air flow control to mitigate the effect of the uncertainty about available renewable power and load dynamics</title><source>ScienceDirect Freedom Collection</source><creator>Bizon, Nicu ; Lopez-Guede, Jose Manuel ; Kurt, Erol ; Thounthong, Phatiphat ; Mazare, Alin Gheorghita ; Ionescu, Laurentiu Mihai ; Iana, Gabriel</creator><creatorcontrib>Bizon, Nicu ; Lopez-Guede, Jose Manuel ; Kurt, Erol ; Thounthong, Phatiphat ; Mazare, Alin Gheorghita ; Ionescu, Laurentiu Mihai ; Iana, Gabriel</creatorcontrib><description>•Fuel economy for the Fuel Cell Hybrid Power Systems is analyzed.•6 kW Fuel Cell under Static Feed-Forward strategy is the reference.•Fuel economy could increase up to 11.8 L using an optimized air flow control.•The uncertainty on load dynamic is mitigated using the Load-Following control.•Fuel economy is obtained in the entire range of load and available renewable power.
A new Energy Management Strategy to reduce the hydrogen consumption is proposed for Hybrid Power Systems based on Proton Exchange Membrane Fuel Cell system used as backup source. The Energy Management Strategy uses a Load Following control loop of requested load demand on DC bus and an optimization control loop to improve the fuel economy based on the Global Extremum Seeking algorithm applied to the air flow rate. The performance of proposed strategy is compared to the one obtained with the Static Feed-Forward strategy considering three case studies for the optimization function used in different scenarios for power flow on DC bus (variable or constant load demand, without or with variable renewable energy power).</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2018.10.058</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Air flow ; Air flow control ; Alternative energy ; Case studies ; Data buses ; Energy ; Energy management ; Flow control ; Flow rates ; Flow velocity ; Fuel cells ; Fuel economy ; Fuel technology ; Global Extremum Seeking ; Hybrid systems ; Hydrogen ; Hydrogen economy ; Hydrogen-based energy ; Load Following ; Loads (forces) ; Optimization ; Power consumption ; Power flow ; Power variability mitigation ; Proton Exchange Membrane Fuel Cell ; Proton exchange membrane fuel cells ; Renewable energy ; Strategy</subject><ispartof>Energy conversion and management, 2019-01, Vol.179, p.152-165</ispartof><rights>2018</rights><rights>Copyright Elsevier Science Ltd. Jan 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-c78d06e41149f670b91d83b06cc993784570d0674b0db4a4ad81c47d0e5973063</citedby><cites>FETCH-LOGICAL-c379t-c78d06e41149f670b91d83b06cc993784570d0674b0db4a4ad81c47d0e5973063</cites><orcidid>0000-0001-9311-7598 ; 0000-0002-5310-1601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bizon, Nicu</creatorcontrib><creatorcontrib>Lopez-Guede, Jose Manuel</creatorcontrib><creatorcontrib>Kurt, Erol</creatorcontrib><creatorcontrib>Thounthong, Phatiphat</creatorcontrib><creatorcontrib>Mazare, Alin Gheorghita</creatorcontrib><creatorcontrib>Ionescu, Laurentiu Mihai</creatorcontrib><creatorcontrib>Iana, Gabriel</creatorcontrib><title>Hydrogen economy of the fuel cell hybrid power system optimized by air flow control to mitigate the effect of the uncertainty about available renewable power and load dynamics</title><title>Energy conversion and management</title><description>•Fuel economy for the Fuel Cell Hybrid Power Systems is analyzed.•6 kW Fuel Cell under Static Feed-Forward strategy is the reference.•Fuel economy could increase up to 11.8 L using an optimized air flow control.•The uncertainty on load dynamic is mitigated using the Load-Following control.•Fuel economy is obtained in the entire range of load and available renewable power.
A new Energy Management Strategy to reduce the hydrogen consumption is proposed for Hybrid Power Systems based on Proton Exchange Membrane Fuel Cell system used as backup source. The Energy Management Strategy uses a Load Following control loop of requested load demand on DC bus and an optimization control loop to improve the fuel economy based on the Global Extremum Seeking algorithm applied to the air flow rate. The performance of proposed strategy is compared to the one obtained with the Static Feed-Forward strategy considering three case studies for the optimization function used in different scenarios for power flow on DC bus (variable or constant load demand, without or with variable renewable energy power).</description><subject>Air flow</subject><subject>Air flow control</subject><subject>Alternative energy</subject><subject>Case studies</subject><subject>Data buses</subject><subject>Energy</subject><subject>Energy management</subject><subject>Flow control</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fuel cells</subject><subject>Fuel economy</subject><subject>Fuel technology</subject><subject>Global Extremum Seeking</subject><subject>Hybrid systems</subject><subject>Hydrogen</subject><subject>Hydrogen economy</subject><subject>Hydrogen-based energy</subject><subject>Load Following</subject><subject>Loads (forces)</subject><subject>Optimization</subject><subject>Power consumption</subject><subject>Power flow</subject><subject>Power variability mitigation</subject><subject>Proton Exchange Membrane Fuel Cell</subject><subject>Proton exchange membrane fuel cells</subject><subject>Renewable energy</subject><subject>Strategy</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc9uFDEMxkcIJJbCKyBLnGdx5l8mN1AFLVIlLnCOMomnzSqTLEmmq-GleEWyXXrmZMv6vp9lf1X1nuGeIRs-HvbkdfCL8vsG2ViGe-zHF9WOjVzUTdPwl9UOmRjqUWD3unqT0gER2x6HXfXndjMx3JMHKoywbBBmyA8E80oONDkHD9sUrYFjOFGEtKVMC4Rjtov9TQamDZSNMLtwgkLIMTjIARab7b3K9MSieSadn8mr1xSzsj4X6xTWDOpRWacmRxDJ0-mpu6xT3oALyoDZvFqsTm-rV7Nyid79q1fVz69fflzf1nffb75df76rdctFrjUfDQ7UMdaJeeA4CWbGdsJBayFaPnY9xyLg3YRm6lSnzMh0xw1SL3iLQ3tVfbhwjzH8WilleQhr9GWlbFjfDsiQY1ENF5WOIaVIszxGu6i4SYbyHI48yOdw5Dmc87yEU4yfLkYqNzxaijJpW5RkbCyvkibY_yH-AnEanxI</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Bizon, Nicu</creator><creator>Lopez-Guede, Jose Manuel</creator><creator>Kurt, Erol</creator><creator>Thounthong, Phatiphat</creator><creator>Mazare, Alin Gheorghita</creator><creator>Ionescu, Laurentiu Mihai</creator><creator>Iana, Gabriel</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9311-7598</orcidid><orcidid>https://orcid.org/0000-0002-5310-1601</orcidid></search><sort><creationdate>20190101</creationdate><title>Hydrogen economy of the fuel cell hybrid power system optimized by air flow control to mitigate the effect of the uncertainty about available renewable power and load dynamics</title><author>Bizon, Nicu ; Lopez-Guede, Jose Manuel ; Kurt, Erol ; Thounthong, Phatiphat ; Mazare, Alin Gheorghita ; Ionescu, Laurentiu Mihai ; Iana, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-c78d06e41149f670b91d83b06cc993784570d0674b0db4a4ad81c47d0e5973063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air flow</topic><topic>Air flow control</topic><topic>Alternative energy</topic><topic>Case studies</topic><topic>Data buses</topic><topic>Energy</topic><topic>Energy management</topic><topic>Flow control</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fuel cells</topic><topic>Fuel economy</topic><topic>Fuel technology</topic><topic>Global Extremum Seeking</topic><topic>Hybrid systems</topic><topic>Hydrogen</topic><topic>Hydrogen economy</topic><topic>Hydrogen-based energy</topic><topic>Load Following</topic><topic>Loads (forces)</topic><topic>Optimization</topic><topic>Power consumption</topic><topic>Power flow</topic><topic>Power variability mitigation</topic><topic>Proton Exchange Membrane Fuel Cell</topic><topic>Proton exchange membrane fuel cells</topic><topic>Renewable energy</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bizon, Nicu</creatorcontrib><creatorcontrib>Lopez-Guede, Jose Manuel</creatorcontrib><creatorcontrib>Kurt, Erol</creatorcontrib><creatorcontrib>Thounthong, Phatiphat</creatorcontrib><creatorcontrib>Mazare, Alin Gheorghita</creatorcontrib><creatorcontrib>Ionescu, Laurentiu Mihai</creatorcontrib><creatorcontrib>Iana, Gabriel</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bizon, Nicu</au><au>Lopez-Guede, Jose Manuel</au><au>Kurt, Erol</au><au>Thounthong, Phatiphat</au><au>Mazare, Alin Gheorghita</au><au>Ionescu, Laurentiu Mihai</au><au>Iana, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen economy of the fuel cell hybrid power system optimized by air flow control to mitigate the effect of the uncertainty about available renewable power and load dynamics</atitle><jtitle>Energy conversion and management</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>179</volume><spage>152</spage><epage>165</epage><pages>152-165</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•Fuel economy for the Fuel Cell Hybrid Power Systems is analyzed.•6 kW Fuel Cell under Static Feed-Forward strategy is the reference.•Fuel economy could increase up to 11.8 L using an optimized air flow control.•The uncertainty on load dynamic is mitigated using the Load-Following control.•Fuel economy is obtained in the entire range of load and available renewable power.
A new Energy Management Strategy to reduce the hydrogen consumption is proposed for Hybrid Power Systems based on Proton Exchange Membrane Fuel Cell system used as backup source. The Energy Management Strategy uses a Load Following control loop of requested load demand on DC bus and an optimization control loop to improve the fuel economy based on the Global Extremum Seeking algorithm applied to the air flow rate. The performance of proposed strategy is compared to the one obtained with the Static Feed-Forward strategy considering three case studies for the optimization function used in different scenarios for power flow on DC bus (variable or constant load demand, without or with variable renewable energy power).</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2018.10.058</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9311-7598</orcidid><orcidid>https://orcid.org/0000-0002-5310-1601</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2019-01, Vol.179, p.152-165 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_proquest_journals_2153601070 |
source | ScienceDirect Freedom Collection |
subjects | Air flow Air flow control Alternative energy Case studies Data buses Energy Energy management Flow control Flow rates Flow velocity Fuel cells Fuel economy Fuel technology Global Extremum Seeking Hybrid systems Hydrogen Hydrogen economy Hydrogen-based energy Load Following Loads (forces) Optimization Power consumption Power flow Power variability mitigation Proton Exchange Membrane Fuel Cell Proton exchange membrane fuel cells Renewable energy Strategy |
title | Hydrogen economy of the fuel cell hybrid power system optimized by air flow control to mitigate the effect of the uncertainty about available renewable power and load dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20economy%20of%20the%20fuel%20cell%20hybrid%20power%20system%20optimized%20by%20air%20flow%20control%20to%20mitigate%20the%20effect%20of%20the%20uncertainty%20about%20available%20renewable%20power%20and%20load%20dynamics&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Bizon,%20Nicu&rft.date=2019-01-01&rft.volume=179&rft.spage=152&rft.epage=165&rft.pages=152-165&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2018.10.058&rft_dat=%3Cproquest_cross%3E2153601070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-c78d06e41149f670b91d83b06cc993784570d0674b0db4a4ad81c47d0e5973063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2153601070&rft_id=info:pmid/&rfr_iscdi=true |