Loading…

An excellent full sodium-ion capacitor derived from a single Ti-based metal-organic framework

Hybrid ion capacitors, especially sodium ion capacitors (SICs), have recently attracted enormous attention due to their combined merits of high energy density from the battery-type anode and high power density from the capacitor-type cathode. However, achieving high-performance SICs to overcome the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (48), p.2486-24868
Main Authors: Chen, Hao, Dai, Chunlong, Li, Yanan, Zhan, Renming, Wang, Min-Qiang, Guo, Bingshu, Zhang, Youquan, Liu, Heng, Xu, Maowen, Bao, Shu-juan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-31232d301804c6a86f78fa4b614a9a09a42b002e062a0330d28a2ec1354af1123
cites cdi_FETCH-LOGICAL-c318t-31232d301804c6a86f78fa4b614a9a09a42b002e062a0330d28a2ec1354af1123
container_end_page 24868
container_issue 48
container_start_page 2486
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Chen, Hao
Dai, Chunlong
Li, Yanan
Zhan, Renming
Wang, Min-Qiang
Guo, Bingshu
Zhang, Youquan
Liu, Heng
Xu, Maowen
Bao, Shu-juan
description Hybrid ion capacitors, especially sodium ion capacitors (SICs), have recently attracted enormous attention due to their combined merits of high energy density from the battery-type anode and high power density from the capacitor-type cathode. However, achieving high-performance SICs to overcome the sluggish kinetic energy storage feature and inferior cycling stability of the battery-type anode remains a challenge. In this work, N-doped porous carbon embedded with ultrasmall titanium oxynitride nanoparticles (TiO x N y /C) was developed from metal-organic frameworks (MOFs). As the SIC anode, the as-designed TiO x N y /C exhibited a high reversible capacity (275 mA h g −1 at 50 mA g −1 ), ultrahigh rate capability, and superior cycling performance, which is attributed to the effective synergy between the ultrasmall TiO x N y nanoparticles and N-doped porous carbon. Furthermore, using a "two-for-one" strategy, N-doped hierarchical porous carbon (NHPC) with high surface area was prepared from TiO x N y /C by HF etching and displayed high specific capacity and rate capability when used as a SIC cathode. Considering the excellent electrochemical performances of both the anode and cathode, the as-assembled TiO x N y /C//NHPC SIC delivered a high energy density (80 W h kg −1 ) and high power density (4000 W kg −1 ). Hybrid ion capacitors, especially sodium ion capacitors (SICs), have recently attracted enormous attention due to their combined merits of high energy density from the battery-type anode and high power density from the capacitor-type cathode.
doi_str_mv 10.1039/c8ta09072f
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2154167854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154167854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-31232d301804c6a86f78fa4b614a9a09a42b002e062a0330d28a2ec1354af1123</originalsourceid><addsrcrecordid>eNpFkEtLAzEQgIMoWGov3oWAN2F18tjd7LEUq4LgpR5lmWaTkrq7qcmuj39vtFLnMsPwzQzzEXLO4JqBqG60GhAqKLk9IhMOOWSlrIrjQ63UKZnFuIUUCqCoqgl5mffUfGrTtqYfqB3blkbfuLHLnO-pxh1qN_hAGxPcu2moDb6jSKPrN62hK5etMaZ2ZwZsMx822DudIOzMhw-vZ-TEYhvN7C9PyfPydrW4zx6f7h4W88dMC6aGTDAueCOAKZC6QFXYUlmU64JJrNJLKPkagBsoOIIQ0HCF3GgmcomWpeEpudzv3QX_Npo41Fs_hj6drDnLJStKlctEXe0pHXyMwdh6F1yH4atmUP8YrBdqNf81uEzwxR4OUR-4f8PiGzjSa_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154167854</pqid></control><display><type>article</type><title>An excellent full sodium-ion capacitor derived from a single Ti-based metal-organic framework</title><source>Royal Society of Chemistry Journals</source><creator>Chen, Hao ; Dai, Chunlong ; Li, Yanan ; Zhan, Renming ; Wang, Min-Qiang ; Guo, Bingshu ; Zhang, Youquan ; Liu, Heng ; Xu, Maowen ; Bao, Shu-juan</creator><creatorcontrib>Chen, Hao ; Dai, Chunlong ; Li, Yanan ; Zhan, Renming ; Wang, Min-Qiang ; Guo, Bingshu ; Zhang, Youquan ; Liu, Heng ; Xu, Maowen ; Bao, Shu-juan</creatorcontrib><description>Hybrid ion capacitors, especially sodium ion capacitors (SICs), have recently attracted enormous attention due to their combined merits of high energy density from the battery-type anode and high power density from the capacitor-type cathode. However, achieving high-performance SICs to overcome the sluggish kinetic energy storage feature and inferior cycling stability of the battery-type anode remains a challenge. In this work, N-doped porous carbon embedded with ultrasmall titanium oxynitride nanoparticles (TiO x N y /C) was developed from metal-organic frameworks (MOFs). As the SIC anode, the as-designed TiO x N y /C exhibited a high reversible capacity (275 mA h g −1 at 50 mA g −1 ), ultrahigh rate capability, and superior cycling performance, which is attributed to the effective synergy between the ultrasmall TiO x N y nanoparticles and N-doped porous carbon. Furthermore, using a "two-for-one" strategy, N-doped hierarchical porous carbon (NHPC) with high surface area was prepared from TiO x N y /C by HF etching and displayed high specific capacity and rate capability when used as a SIC cathode. Considering the excellent electrochemical performances of both the anode and cathode, the as-assembled TiO x N y /C//NHPC SIC delivered a high energy density (80 W h kg −1 ) and high power density (4000 W kg −1 ). Hybrid ion capacitors, especially sodium ion capacitors (SICs), have recently attracted enormous attention due to their combined merits of high energy density from the battery-type anode and high power density from the capacitor-type cathode.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c8ta09072f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Batteries ; Capacitors ; Carbon ; Cathodes ; Cycles ; Density ; Electrochemistry ; Energy storage ; Etching ; Flux density ; Kinetic energy ; Metal-organic frameworks ; Metals ; Nanoparticles ; Sodium ; Specific capacity ; Titanium</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (48), p.2486-24868</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-31232d301804c6a86f78fa4b614a9a09a42b002e062a0330d28a2ec1354af1123</citedby><cites>FETCH-LOGICAL-c318t-31232d301804c6a86f78fa4b614a9a09a42b002e062a0330d28a2ec1354af1123</cites><orcidid>0000-0001-9320-5731 ; 0000-0002-2052-2178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Dai, Chunlong</creatorcontrib><creatorcontrib>Li, Yanan</creatorcontrib><creatorcontrib>Zhan, Renming</creatorcontrib><creatorcontrib>Wang, Min-Qiang</creatorcontrib><creatorcontrib>Guo, Bingshu</creatorcontrib><creatorcontrib>Zhang, Youquan</creatorcontrib><creatorcontrib>Liu, Heng</creatorcontrib><creatorcontrib>Xu, Maowen</creatorcontrib><creatorcontrib>Bao, Shu-juan</creatorcontrib><title>An excellent full sodium-ion capacitor derived from a single Ti-based metal-organic framework</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Hybrid ion capacitors, especially sodium ion capacitors (SICs), have recently attracted enormous attention due to their combined merits of high energy density from the battery-type anode and high power density from the capacitor-type cathode. However, achieving high-performance SICs to overcome the sluggish kinetic energy storage feature and inferior cycling stability of the battery-type anode remains a challenge. In this work, N-doped porous carbon embedded with ultrasmall titanium oxynitride nanoparticles (TiO x N y /C) was developed from metal-organic frameworks (MOFs). As the SIC anode, the as-designed TiO x N y /C exhibited a high reversible capacity (275 mA h g −1 at 50 mA g −1 ), ultrahigh rate capability, and superior cycling performance, which is attributed to the effective synergy between the ultrasmall TiO x N y nanoparticles and N-doped porous carbon. Furthermore, using a "two-for-one" strategy, N-doped hierarchical porous carbon (NHPC) with high surface area was prepared from TiO x N y /C by HF etching and displayed high specific capacity and rate capability when used as a SIC cathode. Considering the excellent electrochemical performances of both the anode and cathode, the as-assembled TiO x N y /C//NHPC SIC delivered a high energy density (80 W h kg −1 ) and high power density (4000 W kg −1 ). Hybrid ion capacitors, especially sodium ion capacitors (SICs), have recently attracted enormous attention due to their combined merits of high energy density from the battery-type anode and high power density from the capacitor-type cathode.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Capacitors</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Cycles</subject><subject>Density</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>Etching</subject><subject>Flux density</subject><subject>Kinetic energy</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Nanoparticles</subject><subject>Sodium</subject><subject>Specific capacity</subject><subject>Titanium</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEQgIMoWGov3oWAN2F18tjd7LEUq4LgpR5lmWaTkrq7qcmuj39vtFLnMsPwzQzzEXLO4JqBqG60GhAqKLk9IhMOOWSlrIrjQ63UKZnFuIUUCqCoqgl5mffUfGrTtqYfqB3blkbfuLHLnO-pxh1qN_hAGxPcu2moDb6jSKPrN62hK5etMaZ2ZwZsMx822DudIOzMhw-vZ-TEYhvN7C9PyfPydrW4zx6f7h4W88dMC6aGTDAueCOAKZC6QFXYUlmU64JJrNJLKPkagBsoOIIQ0HCF3GgmcomWpeEpudzv3QX_Npo41Fs_hj6drDnLJStKlctEXe0pHXyMwdh6F1yH4atmUP8YrBdqNf81uEzwxR4OUR-4f8PiGzjSa_8</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Chen, Hao</creator><creator>Dai, Chunlong</creator><creator>Li, Yanan</creator><creator>Zhan, Renming</creator><creator>Wang, Min-Qiang</creator><creator>Guo, Bingshu</creator><creator>Zhang, Youquan</creator><creator>Liu, Heng</creator><creator>Xu, Maowen</creator><creator>Bao, Shu-juan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9320-5731</orcidid><orcidid>https://orcid.org/0000-0002-2052-2178</orcidid></search><sort><creationdate>2018</creationdate><title>An excellent full sodium-ion capacitor derived from a single Ti-based metal-organic framework</title><author>Chen, Hao ; Dai, Chunlong ; Li, Yanan ; Zhan, Renming ; Wang, Min-Qiang ; Guo, Bingshu ; Zhang, Youquan ; Liu, Heng ; Xu, Maowen ; Bao, Shu-juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-31232d301804c6a86f78fa4b614a9a09a42b002e062a0330d28a2ec1354af1123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Capacitors</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Cycles</topic><topic>Density</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>Etching</topic><topic>Flux density</topic><topic>Kinetic energy</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Nanoparticles</topic><topic>Sodium</topic><topic>Specific capacity</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Dai, Chunlong</creatorcontrib><creatorcontrib>Li, Yanan</creatorcontrib><creatorcontrib>Zhan, Renming</creatorcontrib><creatorcontrib>Wang, Min-Qiang</creatorcontrib><creatorcontrib>Guo, Bingshu</creatorcontrib><creatorcontrib>Zhang, Youquan</creatorcontrib><creatorcontrib>Liu, Heng</creatorcontrib><creatorcontrib>Xu, Maowen</creatorcontrib><creatorcontrib>Bao, Shu-juan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hao</au><au>Dai, Chunlong</au><au>Li, Yanan</au><au>Zhan, Renming</au><au>Wang, Min-Qiang</au><au>Guo, Bingshu</au><au>Zhang, Youquan</au><au>Liu, Heng</au><au>Xu, Maowen</au><au>Bao, Shu-juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An excellent full sodium-ion capacitor derived from a single Ti-based metal-organic framework</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>48</issue><spage>2486</spage><epage>24868</epage><pages>2486-24868</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Hybrid ion capacitors, especially sodium ion capacitors (SICs), have recently attracted enormous attention due to their combined merits of high energy density from the battery-type anode and high power density from the capacitor-type cathode. However, achieving high-performance SICs to overcome the sluggish kinetic energy storage feature and inferior cycling stability of the battery-type anode remains a challenge. In this work, N-doped porous carbon embedded with ultrasmall titanium oxynitride nanoparticles (TiO x N y /C) was developed from metal-organic frameworks (MOFs). As the SIC anode, the as-designed TiO x N y /C exhibited a high reversible capacity (275 mA h g −1 at 50 mA g −1 ), ultrahigh rate capability, and superior cycling performance, which is attributed to the effective synergy between the ultrasmall TiO x N y nanoparticles and N-doped porous carbon. Furthermore, using a "two-for-one" strategy, N-doped hierarchical porous carbon (NHPC) with high surface area was prepared from TiO x N y /C by HF etching and displayed high specific capacity and rate capability when used as a SIC cathode. Considering the excellent electrochemical performances of both the anode and cathode, the as-assembled TiO x N y /C//NHPC SIC delivered a high energy density (80 W h kg −1 ) and high power density (4000 W kg −1 ). Hybrid ion capacitors, especially sodium ion capacitors (SICs), have recently attracted enormous attention due to their combined merits of high energy density from the battery-type anode and high power density from the capacitor-type cathode.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ta09072f</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9320-5731</orcidid><orcidid>https://orcid.org/0000-0002-2052-2178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (48), p.2486-24868
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2154167854
source Royal Society of Chemistry Journals
subjects Anodes
Batteries
Capacitors
Carbon
Cathodes
Cycles
Density
Electrochemistry
Energy storage
Etching
Flux density
Kinetic energy
Metal-organic frameworks
Metals
Nanoparticles
Sodium
Specific capacity
Titanium
title An excellent full sodium-ion capacitor derived from a single Ti-based metal-organic framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20excellent%20full%20sodium-ion%20capacitor%20derived%20from%20a%20single%20Ti-based%20metal-organic%20framework&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Chen,%20Hao&rft.date=2018&rft.volume=6&rft.issue=48&rft.spage=2486&rft.epage=24868&rft.pages=2486-24868&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c8ta09072f&rft_dat=%3Cproquest_cross%3E2154167854%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-31232d301804c6a86f78fa4b614a9a09a42b002e062a0330d28a2ec1354af1123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2154167854&rft_id=info:pmid/&rfr_iscdi=true