Loading…
A gravitational redshift test using eccentric Galileo satellites
We report on a new test of the gravitational redshift and thus of local position invariance, an integral part of the Einstein equivalence principle, which is the foundation of general relativity and all metric theories of gravitation. We use data spanning 1008 days from two satellites of Galileo, Eu...
Saved in:
Published in: | arXiv.org 2018-12 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Delva, P Puchades, N Schönemann, E Dilssner, F Courde, C Bertone, S Gonzalez, F Hees, A Ch Le Poncin-Lafitte Meynadier, F Prieto-Cerdeira, R Sohet, B Ventura-Traveset, J Wolf, P |
description | We report on a new test of the gravitational redshift and thus of local position invariance, an integral part of the Einstein equivalence principle, which is the foundation of general relativity and all metric theories of gravitation. We use data spanning 1008 days from two satellites of Galileo, Europe's global satellite navigation system (GNSS), which were launched in 2014, but accidentally delivered on elliptic rather than circular orbits. The resulting modulation of the gravitational redshift of the onboard atomic clocks allows the redshift determination with high accuracy. Additionally specific laser ranging campaigns to the two satellites have enabled a good estimation of systematic effects related to orbit uncertainties. Together with a careful conservative modelling and control of other systematic effects we measure the fractional deviation of the gravitational redshift from the prediction by general relativity to be \((+0.19 \pm 2.48)\times10^{-5}\) at 1 sigma, improving the best previous test by a factor~5.6. To our knowledge, this represents the first reported improvement on one of the longest standing results in experimental gravitation, the Gravity Probe A hydrogen maser rocket experiment back in 1976. |
doi_str_mv | 10.48550/arxiv.1812.03711 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2154454968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154454968</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-501950c17ecaf473e5dd0d3861696ec090ea9eebf80e2bc2d47bab91e0a455df3</originalsourceid><addsrcrecordid>eNotjs9LwzAYQIMgOOb-AG8Bz61ffrXJzTF0CgMvu4-vydeZEVpt0uGfb0FP7_J4PMYeBNTaGgNPOP3Eay2skDWoVogbtpJKicpqKe_YJucLAMimlcaoFXve8vOE11iwxHHAxCcK-TP2hRfKhc85DmdO3tNQpuj5HlNMNPKMhVKKi3PPbntMmTb_XLPj68tx91YdPvbvu-2hQiNtZUA4A1605LHXrSITAgRlG9G4hjw4IHREXW-BZOdl0G2HnRMEqI0JvVqzx7_s1zR-z8va6TLO0zKcT1IYrY12jVW_yrJL0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154454968</pqid></control><display><type>article</type><title>A gravitational redshift test using eccentric Galileo satellites</title><source>Publicly Available Content Database</source><creator>Delva, P ; Puchades, N ; Schönemann, E ; Dilssner, F ; Courde, C ; Bertone, S ; Gonzalez, F ; Hees, A ; Ch Le Poncin-Lafitte ; Meynadier, F ; Prieto-Cerdeira, R ; Sohet, B ; Ventura-Traveset, J ; Wolf, P</creator><creatorcontrib>Delva, P ; Puchades, N ; Schönemann, E ; Dilssner, F ; Courde, C ; Bertone, S ; Gonzalez, F ; Hees, A ; Ch Le Poncin-Lafitte ; Meynadier, F ; Prieto-Cerdeira, R ; Sohet, B ; Ventura-Traveset, J ; Wolf, P</creatorcontrib><description>We report on a new test of the gravitational redshift and thus of local position invariance, an integral part of the Einstein equivalence principle, which is the foundation of general relativity and all metric theories of gravitation. We use data spanning 1008 days from two satellites of Galileo, Europe's global satellite navigation system (GNSS), which were launched in 2014, but accidentally delivered on elliptic rather than circular orbits. The resulting modulation of the gravitational redshift of the onboard atomic clocks allows the redshift determination with high accuracy. Additionally specific laser ranging campaigns to the two satellites have enabled a good estimation of systematic effects related to orbit uncertainties. Together with a careful conservative modelling and control of other systematic effects we measure the fractional deviation of the gravitational redshift from the prediction by general relativity to be \((+0.19 \pm 2.48)\times10^{-5}\) at 1 sigma, improving the best previous test by a factor~5.6. To our knowledge, this represents the first reported improvement on one of the longest standing results in experimental gravitation, the Gravity Probe A hydrogen maser rocket experiment back in 1976.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1812.03711</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atomic clocks ; Circular orbits ; Equivalence principle ; Galileo satellite system (Europe) ; Global navigation satellite system ; Gravitation ; Hydrogen masers ; Neutrons ; Red shift ; Satellite navigation systems ; Satellites ; Theory of relativity</subject><ispartof>arXiv.org, 2018-12</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2154454968?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Delva, P</creatorcontrib><creatorcontrib>Puchades, N</creatorcontrib><creatorcontrib>Schönemann, E</creatorcontrib><creatorcontrib>Dilssner, F</creatorcontrib><creatorcontrib>Courde, C</creatorcontrib><creatorcontrib>Bertone, S</creatorcontrib><creatorcontrib>Gonzalez, F</creatorcontrib><creatorcontrib>Hees, A</creatorcontrib><creatorcontrib>Ch Le Poncin-Lafitte</creatorcontrib><creatorcontrib>Meynadier, F</creatorcontrib><creatorcontrib>Prieto-Cerdeira, R</creatorcontrib><creatorcontrib>Sohet, B</creatorcontrib><creatorcontrib>Ventura-Traveset, J</creatorcontrib><creatorcontrib>Wolf, P</creatorcontrib><title>A gravitational redshift test using eccentric Galileo satellites</title><title>arXiv.org</title><description>We report on a new test of the gravitational redshift and thus of local position invariance, an integral part of the Einstein equivalence principle, which is the foundation of general relativity and all metric theories of gravitation. We use data spanning 1008 days from two satellites of Galileo, Europe's global satellite navigation system (GNSS), which were launched in 2014, but accidentally delivered on elliptic rather than circular orbits. The resulting modulation of the gravitational redshift of the onboard atomic clocks allows the redshift determination with high accuracy. Additionally specific laser ranging campaigns to the two satellites have enabled a good estimation of systematic effects related to orbit uncertainties. Together with a careful conservative modelling and control of other systematic effects we measure the fractional deviation of the gravitational redshift from the prediction by general relativity to be \((+0.19 \pm 2.48)\times10^{-5}\) at 1 sigma, improving the best previous test by a factor~5.6. To our knowledge, this represents the first reported improvement on one of the longest standing results in experimental gravitation, the Gravity Probe A hydrogen maser rocket experiment back in 1976.</description><subject>Atomic clocks</subject><subject>Circular orbits</subject><subject>Equivalence principle</subject><subject>Galileo satellite system (Europe)</subject><subject>Global navigation satellite system</subject><subject>Gravitation</subject><subject>Hydrogen masers</subject><subject>Neutrons</subject><subject>Red shift</subject><subject>Satellite navigation systems</subject><subject>Satellites</subject><subject>Theory of relativity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjs9LwzAYQIMgOOb-AG8Bz61ffrXJzTF0CgMvu4-vydeZEVpt0uGfb0FP7_J4PMYeBNTaGgNPOP3Eay2skDWoVogbtpJKicpqKe_YJucLAMimlcaoFXve8vOE11iwxHHAxCcK-TP2hRfKhc85DmdO3tNQpuj5HlNMNPKMhVKKi3PPbntMmTb_XLPj68tx91YdPvbvu-2hQiNtZUA4A1605LHXrSITAgRlG9G4hjw4IHREXW-BZOdl0G2HnRMEqI0JvVqzx7_s1zR-z8va6TLO0zKcT1IYrY12jVW_yrJL0A</recordid><startdate>20181210</startdate><enddate>20181210</enddate><creator>Delva, P</creator><creator>Puchades, N</creator><creator>Schönemann, E</creator><creator>Dilssner, F</creator><creator>Courde, C</creator><creator>Bertone, S</creator><creator>Gonzalez, F</creator><creator>Hees, A</creator><creator>Ch Le Poncin-Lafitte</creator><creator>Meynadier, F</creator><creator>Prieto-Cerdeira, R</creator><creator>Sohet, B</creator><creator>Ventura-Traveset, J</creator><creator>Wolf, P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181210</creationdate><title>A gravitational redshift test using eccentric Galileo satellites</title><author>Delva, P ; Puchades, N ; Schönemann, E ; Dilssner, F ; Courde, C ; Bertone, S ; Gonzalez, F ; Hees, A ; Ch Le Poncin-Lafitte ; Meynadier, F ; Prieto-Cerdeira, R ; Sohet, B ; Ventura-Traveset, J ; Wolf, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-501950c17ecaf473e5dd0d3861696ec090ea9eebf80e2bc2d47bab91e0a455df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic clocks</topic><topic>Circular orbits</topic><topic>Equivalence principle</topic><topic>Galileo satellite system (Europe)</topic><topic>Global navigation satellite system</topic><topic>Gravitation</topic><topic>Hydrogen masers</topic><topic>Neutrons</topic><topic>Red shift</topic><topic>Satellite navigation systems</topic><topic>Satellites</topic><topic>Theory of relativity</topic><toplevel>online_resources</toplevel><creatorcontrib>Delva, P</creatorcontrib><creatorcontrib>Puchades, N</creatorcontrib><creatorcontrib>Schönemann, E</creatorcontrib><creatorcontrib>Dilssner, F</creatorcontrib><creatorcontrib>Courde, C</creatorcontrib><creatorcontrib>Bertone, S</creatorcontrib><creatorcontrib>Gonzalez, F</creatorcontrib><creatorcontrib>Hees, A</creatorcontrib><creatorcontrib>Ch Le Poncin-Lafitte</creatorcontrib><creatorcontrib>Meynadier, F</creatorcontrib><creatorcontrib>Prieto-Cerdeira, R</creatorcontrib><creatorcontrib>Sohet, B</creatorcontrib><creatorcontrib>Ventura-Traveset, J</creatorcontrib><creatorcontrib>Wolf, P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delva, P</au><au>Puchades, N</au><au>Schönemann, E</au><au>Dilssner, F</au><au>Courde, C</au><au>Bertone, S</au><au>Gonzalez, F</au><au>Hees, A</au><au>Ch Le Poncin-Lafitte</au><au>Meynadier, F</au><au>Prieto-Cerdeira, R</au><au>Sohet, B</au><au>Ventura-Traveset, J</au><au>Wolf, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A gravitational redshift test using eccentric Galileo satellites</atitle><jtitle>arXiv.org</jtitle><date>2018-12-10</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We report on a new test of the gravitational redshift and thus of local position invariance, an integral part of the Einstein equivalence principle, which is the foundation of general relativity and all metric theories of gravitation. We use data spanning 1008 days from two satellites of Galileo, Europe's global satellite navigation system (GNSS), which were launched in 2014, but accidentally delivered on elliptic rather than circular orbits. The resulting modulation of the gravitational redshift of the onboard atomic clocks allows the redshift determination with high accuracy. Additionally specific laser ranging campaigns to the two satellites have enabled a good estimation of systematic effects related to orbit uncertainties. Together with a careful conservative modelling and control of other systematic effects we measure the fractional deviation of the gravitational redshift from the prediction by general relativity to be \((+0.19 \pm 2.48)\times10^{-5}\) at 1 sigma, improving the best previous test by a factor~5.6. To our knowledge, this represents the first reported improvement on one of the longest standing results in experimental gravitation, the Gravity Probe A hydrogen maser rocket experiment back in 1976.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1812.03711</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2154454968 |
source | Publicly Available Content Database |
subjects | Atomic clocks Circular orbits Equivalence principle Galileo satellite system (Europe) Global navigation satellite system Gravitation Hydrogen masers Neutrons Red shift Satellite navigation systems Satellites Theory of relativity |
title | A gravitational redshift test using eccentric Galileo satellites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20gravitational%20redshift%20test%20using%20eccentric%20Galileo%20satellites&rft.jtitle=arXiv.org&rft.au=Delva,%20P&rft.date=2018-12-10&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1812.03711&rft_dat=%3Cproquest%3E2154454968%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-501950c17ecaf473e5dd0d3861696ec090ea9eebf80e2bc2d47bab91e0a455df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2154454968&rft_id=info:pmid/&rfr_iscdi=true |