Loading…

Estimation of the Bivariate Stable Spectral Representation by the Projection Method

A method of estimating the spectral representation of a generalized bivariate stable distribution is presented, based on a series of maximum likelihood (ML) estimates of the stable parameters of univariate projections of the data. The corresponding stable spectral density is obtained by solving a qu...

Full description

Saved in:
Bibliographic Details
Published in:Computational economics 2000-10, Vol.16 (1), p.47-62
Main Author: McCulloch, J. Huston
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c241t-35c7c319d95df4f7b741096477250caff0a8591a5dda3cc7b1f3c16a784fd1f93
cites
container_end_page 62
container_issue 1
container_start_page 47
container_title Computational economics
container_volume 16
creator McCulloch, J. Huston
description A method of estimating the spectral representation of a generalized bivariate stable distribution is presented, based on a series of maximum likelihood (ML) estimates of the stable parameters of univariate projections of the data. The corresponding stable spectral density is obtained by solving a quadratic program. The proposed method avoids the often arduous task of computing the multivariate stable density, relying instead on the standard univariate stable density. The paper applies this projection procedure, under the simplifying assumption of symmetry, to simulated data as well as to foreign exchange return data, with favorable results. Kanter projection coefficients governing conditional expectations are computed from the estimated spectral density. For the simulated data these compare well to their known true values.
doi_str_mv 10.1023/a:1008797318867
format article
fullrecord <record><control><sourceid>proquest_repec</sourceid><recordid>TN_cdi_proquest_journals_215553119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>417582401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-35c7c319d95df4f7b741096477250caff0a8591a5dda3cc7b1f3c16a784fd1f93</originalsourceid><addsrcrecordid>eNotkM1LAzEQxYMoWKtnr4v31Uw-djbetLQqVBSr55DNJnRr212zaaH_vVnr4c2Dx48Z3hByDfQWKON35h4oLVEhh7Is8ISMQCLLlUJxSkZUMcyRKnVOLvp-RSmVwNiILKZ9bDYmNu02a30Wly57bPYmNCa6bBFNtU7WORuDWWcfrguud9t45KvDH_8e2lUChuTVxWVbX5Izb9a9u_r3MfmaTT8nz_n87ell8jDPLRMQcy4tWg6qVrL2wmOFAqgqBCKT1BrvqSmlAiPr2nBrsQLPLRQGS-Fr8IqPyc1xbxfan53ro161u7BNJzUDKSUHGKD5EQou1dBdSG3DQX-bzrabIdlrbqBI45DE0mOSNUOmmWfJuySBumB6GTf8F-kDbAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215553119</pqid></control><display><type>article</type><title>Estimation of the Bivariate Stable Spectral Representation by the Projection Method</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>McCulloch, J. Huston</creator><creatorcontrib>McCulloch, J. Huston</creatorcontrib><description>A method of estimating the spectral representation of a generalized bivariate stable distribution is presented, based on a series of maximum likelihood (ML) estimates of the stable parameters of univariate projections of the data. The corresponding stable spectral density is obtained by solving a quadratic program. The proposed method avoids the often arduous task of computing the multivariate stable density, relying instead on the standard univariate stable density. The paper applies this projection procedure, under the simplifying assumption of symmetry, to simulated data as well as to foreign exchange return data, with favorable results. Kanter projection coefficients governing conditional expectations are computed from the estimated spectral density. For the simulated data these compare well to their known true values.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1023/a:1008797318867</identifier><language>eng</language><publisher>Dordrecht: Society for Computational Economics</publisher><subject>Capital assets ; Economic models ; Estimates ; estimation of bivariate stable spectral representation ; Foreign exchange rates ; Kanter projection coefficient ; Multivariate analysis ; Parameter estimation ; projection method ; Random variables ; Simulation ; Studies ; Symmetry</subject><ispartof>Computational economics, 2000-10, Vol.16 (1), p.47-62</ispartof><rights>Copyright (c) 2000 Kluwer Academic Publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c241t-35c7c319d95df4f7b741096477250caff0a8591a5dda3cc7b1f3c16a784fd1f93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/215553119/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/215553119?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,12826,27901,27902,33200,36037,44339,74638</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/kapcompec/v_3a16_3ay_3a2000_3ai_3a1_2f2_3ap_3a47-62.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>McCulloch, J. Huston</creatorcontrib><title>Estimation of the Bivariate Stable Spectral Representation by the Projection Method</title><title>Computational economics</title><description>A method of estimating the spectral representation of a generalized bivariate stable distribution is presented, based on a series of maximum likelihood (ML) estimates of the stable parameters of univariate projections of the data. The corresponding stable spectral density is obtained by solving a quadratic program. The proposed method avoids the often arduous task of computing the multivariate stable density, relying instead on the standard univariate stable density. The paper applies this projection procedure, under the simplifying assumption of symmetry, to simulated data as well as to foreign exchange return data, with favorable results. Kanter projection coefficients governing conditional expectations are computed from the estimated spectral density. For the simulated data these compare well to their known true values.</description><subject>Capital assets</subject><subject>Economic models</subject><subject>Estimates</subject><subject>estimation of bivariate stable spectral representation</subject><subject>Foreign exchange rates</subject><subject>Kanter projection coefficient</subject><subject>Multivariate analysis</subject><subject>Parameter estimation</subject><subject>projection method</subject><subject>Random variables</subject><subject>Simulation</subject><subject>Studies</subject><subject>Symmetry</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNotkM1LAzEQxYMoWKtnr4v31Uw-djbetLQqVBSr55DNJnRr212zaaH_vVnr4c2Dx48Z3hByDfQWKON35h4oLVEhh7Is8ISMQCLLlUJxSkZUMcyRKnVOLvp-RSmVwNiILKZ9bDYmNu02a30Wly57bPYmNCa6bBFNtU7WORuDWWcfrguud9t45KvDH_8e2lUChuTVxWVbX5Izb9a9u_r3MfmaTT8nz_n87ell8jDPLRMQcy4tWg6qVrL2wmOFAqgqBCKT1BrvqSmlAiPr2nBrsQLPLRQGS-Fr8IqPyc1xbxfan53ro161u7BNJzUDKSUHGKD5EQou1dBdSG3DQX-bzrabIdlrbqBI45DE0mOSNUOmmWfJuySBumB6GTf8F-kDbAM</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>McCulloch, J. Huston</creator><general>Society for Computational Economics</general><general>Springer Nature B.V</general><scope>DKI</scope><scope>X2L</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20001001</creationdate><title>Estimation of the Bivariate Stable Spectral Representation by the Projection Method</title><author>McCulloch, J. Huston</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-35c7c319d95df4f7b741096477250caff0a8591a5dda3cc7b1f3c16a784fd1f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Capital assets</topic><topic>Economic models</topic><topic>Estimates</topic><topic>estimation of bivariate stable spectral representation</topic><topic>Foreign exchange rates</topic><topic>Kanter projection coefficient</topic><topic>Multivariate analysis</topic><topic>Parameter estimation</topic><topic>projection method</topic><topic>Random variables</topic><topic>Simulation</topic><topic>Studies</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCulloch, J. Huston</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCulloch, J. Huston</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the Bivariate Stable Spectral Representation by the Projection Method</atitle><jtitle>Computational economics</jtitle><date>2000-10-01</date><risdate>2000</risdate><volume>16</volume><issue>1</issue><spage>47</spage><epage>62</epage><pages>47-62</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>A method of estimating the spectral representation of a generalized bivariate stable distribution is presented, based on a series of maximum likelihood (ML) estimates of the stable parameters of univariate projections of the data. The corresponding stable spectral density is obtained by solving a quadratic program. The proposed method avoids the often arduous task of computing the multivariate stable density, relying instead on the standard univariate stable density. The paper applies this projection procedure, under the simplifying assumption of symmetry, to simulated data as well as to foreign exchange return data, with favorable results. Kanter projection coefficients governing conditional expectations are computed from the estimated spectral density. For the simulated data these compare well to their known true values.</abstract><cop>Dordrecht</cop><pub>Society for Computational Economics</pub><doi>10.1023/a:1008797318867</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7099
ispartof Computational economics, 2000-10, Vol.16 (1), p.47-62
issn 0927-7099
1572-9974
language eng
recordid cdi_proquest_journals_215553119
source International Bibliography of the Social Sciences (IBSS); ABI/INFORM Global; Springer Nature
subjects Capital assets
Economic models
Estimates
estimation of bivariate stable spectral representation
Foreign exchange rates
Kanter projection coefficient
Multivariate analysis
Parameter estimation
projection method
Random variables
Simulation
Studies
Symmetry
title Estimation of the Bivariate Stable Spectral Representation by the Projection Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_repec&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20Bivariate%20Stable%20Spectral%20Representation%20by%20the%20Projection%20Method&rft.jtitle=Computational%20economics&rft.au=McCulloch,%20J.%20Huston&rft.date=2000-10-01&rft.volume=16&rft.issue=1&rft.spage=47&rft.epage=62&rft.pages=47-62&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1023/a:1008797318867&rft_dat=%3Cproquest_repec%3E417582401%3C/proquest_repec%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c241t-35c7c319d95df4f7b741096477250caff0a8591a5dda3cc7b1f3c16a784fd1f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215553119&rft_id=info:pmid/&rfr_iscdi=true