Loading…
Estimation of the Bivariate Stable Spectral Representation by the Projection Method
A method of estimating the spectral representation of a generalized bivariate stable distribution is presented, based on a series of maximum likelihood (ML) estimates of the stable parameters of univariate projections of the data. The corresponding stable spectral density is obtained by solving a qu...
Saved in:
Published in: | Computational economics 2000-10, Vol.16 (1), p.47-62 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c241t-35c7c319d95df4f7b741096477250caff0a8591a5dda3cc7b1f3c16a784fd1f93 |
---|---|
cites | |
container_end_page | 62 |
container_issue | 1 |
container_start_page | 47 |
container_title | Computational economics |
container_volume | 16 |
creator | McCulloch, J. Huston |
description | A method of estimating the spectral representation of a generalized bivariate stable distribution is presented, based on a series of maximum likelihood (ML) estimates of the stable parameters of univariate projections of the data. The corresponding stable spectral density is obtained by solving a quadratic program. The proposed method avoids the often arduous task of computing the multivariate stable density, relying instead on the standard univariate stable density. The paper applies this projection procedure, under the simplifying assumption of symmetry, to simulated data as well as to foreign exchange return data, with favorable results. Kanter projection coefficients governing conditional expectations are computed from the estimated spectral density. For the simulated data these compare well to their known true values. |
doi_str_mv | 10.1023/a:1008797318867 |
format | article |
fullrecord | <record><control><sourceid>proquest_repec</sourceid><recordid>TN_cdi_proquest_journals_215553119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>417582401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-35c7c319d95df4f7b741096477250caff0a8591a5dda3cc7b1f3c16a784fd1f93</originalsourceid><addsrcrecordid>eNotkM1LAzEQxYMoWKtnr4v31Uw-djbetLQqVBSr55DNJnRr212zaaH_vVnr4c2Dx48Z3hByDfQWKON35h4oLVEhh7Is8ISMQCLLlUJxSkZUMcyRKnVOLvp-RSmVwNiILKZ9bDYmNu02a30Wly57bPYmNCa6bBFNtU7WORuDWWcfrguud9t45KvDH_8e2lUChuTVxWVbX5Izb9a9u_r3MfmaTT8nz_n87ell8jDPLRMQcy4tWg6qVrL2wmOFAqgqBCKT1BrvqSmlAiPr2nBrsQLPLRQGS-Fr8IqPyc1xbxfan53ro161u7BNJzUDKSUHGKD5EQou1dBdSG3DQX-bzrabIdlrbqBI45DE0mOSNUOmmWfJuySBumB6GTf8F-kDbAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215553119</pqid></control><display><type>article</type><title>Estimation of the Bivariate Stable Spectral Representation by the Projection Method</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>McCulloch, J. Huston</creator><creatorcontrib>McCulloch, J. Huston</creatorcontrib><description>A method of estimating the spectral representation of a generalized bivariate stable distribution is presented, based on a series of maximum likelihood (ML) estimates of the stable parameters of univariate projections of the data. The corresponding stable spectral density is obtained by solving a quadratic program. The proposed method avoids the often arduous task of computing the multivariate stable density, relying instead on the standard univariate stable density. The paper applies this projection procedure, under the simplifying assumption of symmetry, to simulated data as well as to foreign exchange return data, with favorable results. Kanter projection coefficients governing conditional expectations are computed from the estimated spectral density. For the simulated data these compare well to their known true values.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1023/a:1008797318867</identifier><language>eng</language><publisher>Dordrecht: Society for Computational Economics</publisher><subject>Capital assets ; Economic models ; Estimates ; estimation of bivariate stable spectral representation ; Foreign exchange rates ; Kanter projection coefficient ; Multivariate analysis ; Parameter estimation ; projection method ; Random variables ; Simulation ; Studies ; Symmetry</subject><ispartof>Computational economics, 2000-10, Vol.16 (1), p.47-62</ispartof><rights>Copyright (c) 2000 Kluwer Academic Publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c241t-35c7c319d95df4f7b741096477250caff0a8591a5dda3cc7b1f3c16a784fd1f93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/215553119/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/215553119?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,12826,27901,27902,33200,36037,44339,74638</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/kapcompec/v_3a16_3ay_3a2000_3ai_3a1_2f2_3ap_3a47-62.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>McCulloch, J. Huston</creatorcontrib><title>Estimation of the Bivariate Stable Spectral Representation by the Projection Method</title><title>Computational economics</title><description>A method of estimating the spectral representation of a generalized bivariate stable distribution is presented, based on a series of maximum likelihood (ML) estimates of the stable parameters of univariate projections of the data. The corresponding stable spectral density is obtained by solving a quadratic program. The proposed method avoids the often arduous task of computing the multivariate stable density, relying instead on the standard univariate stable density. The paper applies this projection procedure, under the simplifying assumption of symmetry, to simulated data as well as to foreign exchange return data, with favorable results. Kanter projection coefficients governing conditional expectations are computed from the estimated spectral density. For the simulated data these compare well to their known true values.</description><subject>Capital assets</subject><subject>Economic models</subject><subject>Estimates</subject><subject>estimation of bivariate stable spectral representation</subject><subject>Foreign exchange rates</subject><subject>Kanter projection coefficient</subject><subject>Multivariate analysis</subject><subject>Parameter estimation</subject><subject>projection method</subject><subject>Random variables</subject><subject>Simulation</subject><subject>Studies</subject><subject>Symmetry</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNotkM1LAzEQxYMoWKtnr4v31Uw-djbetLQqVBSr55DNJnRr212zaaH_vVnr4c2Dx48Z3hByDfQWKON35h4oLVEhh7Is8ISMQCLLlUJxSkZUMcyRKnVOLvp-RSmVwNiILKZ9bDYmNu02a30Wly57bPYmNCa6bBFNtU7WORuDWWcfrguud9t45KvDH_8e2lUChuTVxWVbX5Izb9a9u_r3MfmaTT8nz_n87ell8jDPLRMQcy4tWg6qVrL2wmOFAqgqBCKT1BrvqSmlAiPr2nBrsQLPLRQGS-Fr8IqPyc1xbxfan53ro161u7BNJzUDKSUHGKD5EQou1dBdSG3DQX-bzrabIdlrbqBI45DE0mOSNUOmmWfJuySBumB6GTf8F-kDbAM</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>McCulloch, J. Huston</creator><general>Society for Computational Economics</general><general>Springer Nature B.V</general><scope>DKI</scope><scope>X2L</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20001001</creationdate><title>Estimation of the Bivariate Stable Spectral Representation by the Projection Method</title><author>McCulloch, J. Huston</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-35c7c319d95df4f7b741096477250caff0a8591a5dda3cc7b1f3c16a784fd1f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Capital assets</topic><topic>Economic models</topic><topic>Estimates</topic><topic>estimation of bivariate stable spectral representation</topic><topic>Foreign exchange rates</topic><topic>Kanter projection coefficient</topic><topic>Multivariate analysis</topic><topic>Parameter estimation</topic><topic>projection method</topic><topic>Random variables</topic><topic>Simulation</topic><topic>Studies</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCulloch, J. Huston</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCulloch, J. Huston</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the Bivariate Stable Spectral Representation by the Projection Method</atitle><jtitle>Computational economics</jtitle><date>2000-10-01</date><risdate>2000</risdate><volume>16</volume><issue>1</issue><spage>47</spage><epage>62</epage><pages>47-62</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>A method of estimating the spectral representation of a generalized bivariate stable distribution is presented, based on a series of maximum likelihood (ML) estimates of the stable parameters of univariate projections of the data. The corresponding stable spectral density is obtained by solving a quadratic program. The proposed method avoids the often arduous task of computing the multivariate stable density, relying instead on the standard univariate stable density. The paper applies this projection procedure, under the simplifying assumption of symmetry, to simulated data as well as to foreign exchange return data, with favorable results. Kanter projection coefficients governing conditional expectations are computed from the estimated spectral density. For the simulated data these compare well to their known true values.</abstract><cop>Dordrecht</cop><pub>Society for Computational Economics</pub><doi>10.1023/a:1008797318867</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7099 |
ispartof | Computational economics, 2000-10, Vol.16 (1), p.47-62 |
issn | 0927-7099 1572-9974 |
language | eng |
recordid | cdi_proquest_journals_215553119 |
source | International Bibliography of the Social Sciences (IBSS); ABI/INFORM Global; Springer Nature |
subjects | Capital assets Economic models Estimates estimation of bivariate stable spectral representation Foreign exchange rates Kanter projection coefficient Multivariate analysis Parameter estimation projection method Random variables Simulation Studies Symmetry |
title | Estimation of the Bivariate Stable Spectral Representation by the Projection Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_repec&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20Bivariate%20Stable%20Spectral%20Representation%20by%20the%20Projection%20Method&rft.jtitle=Computational%20economics&rft.au=McCulloch,%20J.%20Huston&rft.date=2000-10-01&rft.volume=16&rft.issue=1&rft.spage=47&rft.epage=62&rft.pages=47-62&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1023/a:1008797318867&rft_dat=%3Cproquest_repec%3E417582401%3C/proquest_repec%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c241t-35c7c319d95df4f7b741096477250caff0a8591a5dda3cc7b1f3c16a784fd1f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215553119&rft_id=info:pmid/&rfr_iscdi=true |