Loading…

Influence of Gd on the microstructure, mechanical and shape memory properties of Cu-Al-Be polycrystalline shape memory alloy

In the present study, the influence of rare earth element gadolinium (Gd) on Cu-Al-Be polycrystalline shape memory alloy has been investigated. Cu 88.13 Al 11.42 Be 0.45 ternary alloy with addition of Gd from 0.05 to 0.15 wt% has been used for investigation. The tests have been carried out for micro...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-11, Vol.737, p.245-252
Main Authors: Guniputi, Bala Narasimha, Murigendrappa, S.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, the influence of rare earth element gadolinium (Gd) on Cu-Al-Be polycrystalline shape memory alloy has been investigated. Cu 88.13 Al 11.42 Be 0.45 ternary alloy with addition of Gd from 0.05 to 0.15 wt% has been used for investigation. The tests have been carried out for microstructure, morphology, ductility, phases, crystal structure, phase transformation temperatures and shape recovery ratio. Refinement of the grain size resulted as gadolinium increased from 0 to 0.08 wt%, the grain size decreases from 463.45 to 81.80 µm with reduction of 82.34%. The tensile strength has increased from 398.93 to 581.42 MPa with improvement in the ductility from 10.05% to 23.72% at 0.08 wt% gadolinium. The phase transformation temperatures increases as gadolinium increases and reduction in shape recovery ratio from 97% to 65%.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2018.09.064