Loading…

Temperature dependence of the magnetic properties of mono-dispersed Co0.5Zn0.5Fe2O4 microtubes derived from different templates

In this work, the Co 0.5 Zn 0.5 Fe 2 O 4 microtube was prepared via a template-assembled sol–gel method, where three kinds of natural fiber worked as template. Effect of template types on morphology, specific area, and magnetic properties under different temperatures of ferrites microtube was invest...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2019-02, Vol.30 (3), p.2809-2820
Main Authors: Gao, Peng-zhao, Huang, Zhi-bo, Zheng, Hang-bo, Liu, Xiao-pan, Wen, Jin, Rebrov, Evgeny V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c246t-3051856537afdc215725ce7f8f757f35a3299318c18c6cc51657fbf1743665853
cites cdi_FETCH-LOGICAL-c246t-3051856537afdc215725ce7f8f757f35a3299318c18c6cc51657fbf1743665853
container_end_page 2820
container_issue 3
container_start_page 2809
container_title Journal of materials science. Materials in electronics
container_volume 30
creator Gao, Peng-zhao
Huang, Zhi-bo
Zheng, Hang-bo
Liu, Xiao-pan
Wen, Jin
Rebrov, Evgeny V.
description In this work, the Co 0.5 Zn 0.5 Fe 2 O 4 microtube was prepared via a template-assembled sol–gel method, where three kinds of natural fiber worked as template. Effect of template types on morphology, specific area, and magnetic properties under different temperatures of ferrites microtube was investigated. XRD results confirm the formation of pure spinel Co 0.5 Zn 0.5 Fe 2 O 4 ; SEM results proves that the CZF-microtubes is mono-dispersed and exactly copies the morphology of the corresponding template. It possesses excellent magnetic properties ( M s , 62.62 emu g −1 ) and higher specific area (51.11 m 2  g −1 ), respectively, the former is mainly due to the net-liked microstructure and distribution of higher magnetic magneton cation in crystal cell, and the latter is attributed to not only the smaller grain size, but also the stack manner of nanoparticles. Below Curie temperature, coercivity of CZF-microtubes decreases with an increased temperatures in accordance with the ferromagnetism theory as the degree of atomic thermal vibration increases; Above Curie temperature, the unique variety of coercivity is attributable to not only the competition between the 2nd and 4th order crystal field terms derived from the d electrons of Fe 3+ and Co 2+ in crystal cell, but also the easy magnetized direction switches from basal plane to c axis via a preferred orientation of the magnetic moments in microtubes structure; The high H c value of CZF-microtube above Blocking temperature T B (450.19 K) results from the existence of interparticle interaction as nanoparticles of it aggregate to produce a microtube structure, and resulting in a deviation from normal Kneller’s law.
doi_str_mv 10.1007/s10854-018-0557-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2157701286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157701286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-3051856537afdc215725ce7f8f757f35a3299318c18c6cc51657fbf1743665853</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89Z8bDbpUYpVQeilgngJ2-ykbul-mGQFT_51Z1nBkxASePPMOzMvIdecLThj-jZyZlSeMW4yppTO2AmZcaVllhvxekpmbIliroQ4JxcxHhhjRS7NjHxvoekhlGkIQCvooa2gdUA7T9M70Kbct5BqR_vQIZZqiONX07VdVtURpQgVXXVsod5avNYgNjltahe6NOwQriDUn4j40DW0qr2HAG2iCbseywTxkpz58hjh6vedk5f1_Xb1mD1vHp5Wd8-ZE3mRMskUN6pQUpe-cgI3E8qB9sZrpb1UpRTLpeTG4SmcU7xAeee5zmVRKKPknNxMvrjIxwAx2UM3hBZb2tFNMy5MgRSfKJw_xgDe9qFuyvBlObNjznbK2WLOdszZMqwRU01Ett1D-HP-v-gH9VWAOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157701286</pqid></control><display><type>article</type><title>Temperature dependence of the magnetic properties of mono-dispersed Co0.5Zn0.5Fe2O4 microtubes derived from different templates</title><source>Springer Link</source><creator>Gao, Peng-zhao ; Huang, Zhi-bo ; Zheng, Hang-bo ; Liu, Xiao-pan ; Wen, Jin ; Rebrov, Evgeny V.</creator><creatorcontrib>Gao, Peng-zhao ; Huang, Zhi-bo ; Zheng, Hang-bo ; Liu, Xiao-pan ; Wen, Jin ; Rebrov, Evgeny V.</creatorcontrib><description>In this work, the Co 0.5 Zn 0.5 Fe 2 O 4 microtube was prepared via a template-assembled sol–gel method, where three kinds of natural fiber worked as template. Effect of template types on morphology, specific area, and magnetic properties under different temperatures of ferrites microtube was investigated. XRD results confirm the formation of pure spinel Co 0.5 Zn 0.5 Fe 2 O 4 ; SEM results proves that the CZF-microtubes is mono-dispersed and exactly copies the morphology of the corresponding template. It possesses excellent magnetic properties ( M s , 62.62 emu g −1 ) and higher specific area (51.11 m 2  g −1 ), respectively, the former is mainly due to the net-liked microstructure and distribution of higher magnetic magneton cation in crystal cell, and the latter is attributed to not only the smaller grain size, but also the stack manner of nanoparticles. Below Curie temperature, coercivity of CZF-microtubes decreases with an increased temperatures in accordance with the ferromagnetism theory as the degree of atomic thermal vibration increases; Above Curie temperature, the unique variety of coercivity is attributable to not only the competition between the 2nd and 4th order crystal field terms derived from the d electrons of Fe 3+ and Co 2+ in crystal cell, but also the easy magnetized direction switches from basal plane to c axis via a preferred orientation of the magnetic moments in microtubes structure; The high H c value of CZF-microtube above Blocking temperature T B (450.19 K) results from the existence of interparticle interaction as nanoparticles of it aggregate to produce a microtube structure, and resulting in a deviation from normal Kneller’s law.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-018-0557-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Basal plane ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cobalt ; Coercivity ; Crystals ; Curie temperature ; Dispersion ; Ferromagnetism ; Magnetic moments ; Magnetic properties ; Magnetism ; Materials Science ; Morphology ; Nanoparticles ; Optical and Electronic Materials ; Preferred orientation ; Sol-gel processes ; Switches ; Temperature ; Temperature dependence</subject><ispartof>Journal of materials science. Materials in electronics, 2019-02, Vol.30 (3), p.2809-2820</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-3051856537afdc215725ce7f8f757f35a3299318c18c6cc51657fbf1743665853</citedby><cites>FETCH-LOGICAL-c246t-3051856537afdc215725ce7f8f757f35a3299318c18c6cc51657fbf1743665853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gao, Peng-zhao</creatorcontrib><creatorcontrib>Huang, Zhi-bo</creatorcontrib><creatorcontrib>Zheng, Hang-bo</creatorcontrib><creatorcontrib>Liu, Xiao-pan</creatorcontrib><creatorcontrib>Wen, Jin</creatorcontrib><creatorcontrib>Rebrov, Evgeny V.</creatorcontrib><title>Temperature dependence of the magnetic properties of mono-dispersed Co0.5Zn0.5Fe2O4 microtubes derived from different templates</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this work, the Co 0.5 Zn 0.5 Fe 2 O 4 microtube was prepared via a template-assembled sol–gel method, where three kinds of natural fiber worked as template. Effect of template types on morphology, specific area, and magnetic properties under different temperatures of ferrites microtube was investigated. XRD results confirm the formation of pure spinel Co 0.5 Zn 0.5 Fe 2 O 4 ; SEM results proves that the CZF-microtubes is mono-dispersed and exactly copies the morphology of the corresponding template. It possesses excellent magnetic properties ( M s , 62.62 emu g −1 ) and higher specific area (51.11 m 2  g −1 ), respectively, the former is mainly due to the net-liked microstructure and distribution of higher magnetic magneton cation in crystal cell, and the latter is attributed to not only the smaller grain size, but also the stack manner of nanoparticles. Below Curie temperature, coercivity of CZF-microtubes decreases with an increased temperatures in accordance with the ferromagnetism theory as the degree of atomic thermal vibration increases; Above Curie temperature, the unique variety of coercivity is attributable to not only the competition between the 2nd and 4th order crystal field terms derived from the d electrons of Fe 3+ and Co 2+ in crystal cell, but also the easy magnetized direction switches from basal plane to c axis via a preferred orientation of the magnetic moments in microtubes structure; The high H c value of CZF-microtube above Blocking temperature T B (450.19 K) results from the existence of interparticle interaction as nanoparticles of it aggregate to produce a microtube structure, and resulting in a deviation from normal Kneller’s law.</description><subject>Basal plane</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Coercivity</subject><subject>Crystals</subject><subject>Curie temperature</subject><subject>Dispersion</subject><subject>Ferromagnetism</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Preferred orientation</subject><subject>Sol-gel processes</subject><subject>Switches</subject><subject>Temperature</subject><subject>Temperature dependence</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89Z8bDbpUYpVQeilgngJ2-ykbul-mGQFT_51Z1nBkxASePPMOzMvIdecLThj-jZyZlSeMW4yppTO2AmZcaVllhvxekpmbIliroQ4JxcxHhhjRS7NjHxvoekhlGkIQCvooa2gdUA7T9M70Kbct5BqR_vQIZZqiONX07VdVtURpQgVXXVsod5avNYgNjltahe6NOwQriDUn4j40DW0qr2HAG2iCbseywTxkpz58hjh6vedk5f1_Xb1mD1vHp5Wd8-ZE3mRMskUN6pQUpe-cgI3E8qB9sZrpb1UpRTLpeTG4SmcU7xAeee5zmVRKKPknNxMvrjIxwAx2UM3hBZb2tFNMy5MgRSfKJw_xgDe9qFuyvBlObNjznbK2WLOdszZMqwRU01Ett1D-HP-v-gH9VWAOw</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Gao, Peng-zhao</creator><creator>Huang, Zhi-bo</creator><creator>Zheng, Hang-bo</creator><creator>Liu, Xiao-pan</creator><creator>Wen, Jin</creator><creator>Rebrov, Evgeny V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20190201</creationdate><title>Temperature dependence of the magnetic properties of mono-dispersed Co0.5Zn0.5Fe2O4 microtubes derived from different templates</title><author>Gao, Peng-zhao ; Huang, Zhi-bo ; Zheng, Hang-bo ; Liu, Xiao-pan ; Wen, Jin ; Rebrov, Evgeny V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-3051856537afdc215725ce7f8f757f35a3299318c18c6cc51657fbf1743665853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Basal plane</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Coercivity</topic><topic>Crystals</topic><topic>Curie temperature</topic><topic>Dispersion</topic><topic>Ferromagnetism</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Preferred orientation</topic><topic>Sol-gel processes</topic><topic>Switches</topic><topic>Temperature</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Peng-zhao</creatorcontrib><creatorcontrib>Huang, Zhi-bo</creatorcontrib><creatorcontrib>Zheng, Hang-bo</creatorcontrib><creatorcontrib>Liu, Xiao-pan</creatorcontrib><creatorcontrib>Wen, Jin</creatorcontrib><creatorcontrib>Rebrov, Evgeny V.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Peng-zhao</au><au>Huang, Zhi-bo</au><au>Zheng, Hang-bo</au><au>Liu, Xiao-pan</au><au>Wen, Jin</au><au>Rebrov, Evgeny V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature dependence of the magnetic properties of mono-dispersed Co0.5Zn0.5Fe2O4 microtubes derived from different templates</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>30</volume><issue>3</issue><spage>2809</spage><epage>2820</epage><pages>2809-2820</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this work, the Co 0.5 Zn 0.5 Fe 2 O 4 microtube was prepared via a template-assembled sol–gel method, where three kinds of natural fiber worked as template. Effect of template types on morphology, specific area, and magnetic properties under different temperatures of ferrites microtube was investigated. XRD results confirm the formation of pure spinel Co 0.5 Zn 0.5 Fe 2 O 4 ; SEM results proves that the CZF-microtubes is mono-dispersed and exactly copies the morphology of the corresponding template. It possesses excellent magnetic properties ( M s , 62.62 emu g −1 ) and higher specific area (51.11 m 2  g −1 ), respectively, the former is mainly due to the net-liked microstructure and distribution of higher magnetic magneton cation in crystal cell, and the latter is attributed to not only the smaller grain size, but also the stack manner of nanoparticles. Below Curie temperature, coercivity of CZF-microtubes decreases with an increased temperatures in accordance with the ferromagnetism theory as the degree of atomic thermal vibration increases; Above Curie temperature, the unique variety of coercivity is attributable to not only the competition between the 2nd and 4th order crystal field terms derived from the d electrons of Fe 3+ and Co 2+ in crystal cell, but also the easy magnetized direction switches from basal plane to c axis via a preferred orientation of the magnetic moments in microtubes structure; The high H c value of CZF-microtube above Blocking temperature T B (450.19 K) results from the existence of interparticle interaction as nanoparticles of it aggregate to produce a microtube structure, and resulting in a deviation from normal Kneller’s law.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-018-0557-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2019-02, Vol.30 (3), p.2809-2820
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2157701286
source Springer Link
subjects Basal plane
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cobalt
Coercivity
Crystals
Curie temperature
Dispersion
Ferromagnetism
Magnetic moments
Magnetic properties
Magnetism
Materials Science
Morphology
Nanoparticles
Optical and Electronic Materials
Preferred orientation
Sol-gel processes
Switches
Temperature
Temperature dependence
title Temperature dependence of the magnetic properties of mono-dispersed Co0.5Zn0.5Fe2O4 microtubes derived from different templates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20dependence%20of%20the%20magnetic%20properties%20of%20mono-dispersed%20Co0.5Zn0.5Fe2O4%20microtubes%20derived%20from%20different%20templates&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Gao,%20Peng-zhao&rft.date=2019-02-01&rft.volume=30&rft.issue=3&rft.spage=2809&rft.epage=2820&rft.pages=2809-2820&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-018-0557-0&rft_dat=%3Cproquest_cross%3E2157701286%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-3051856537afdc215725ce7f8f757f35a3299318c18c6cc51657fbf1743665853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2157701286&rft_id=info:pmid/&rfr_iscdi=true