Loading…
Molecular Dynamics Simulation: Influence of External Electric Field on Bubble Interface in Air Flotation Process
Molecular dynamics(MD) simulation was performed to investigate the influence of external electric field on the vapour-liquid interface of the bubble during the process of toluene separation by air flotation. The physico-chemical properties of vapour-liquid interface, surface tension, probability of...
Saved in:
Published in: | Chemical research in Chinese universities 2018-12, Vol.34 (6), p.939-944 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Molecular dynamics(MD) simulation was performed to investigate the influence of external electric field on the vapour-liquid interface of the bubble during the process of toluene separation by air flotation. The physico-chemical properties of vapour-liquid interface, surface tension, probability of a hydrogen bonding near the vapour-liquid interface and the viscosity of liquid phase caused by external electric field were analyzed. The results show that the angle between the water molecule dipole moment and the normal
z
axis in the vapour phase changes smaller when the external electric field is applied. The surface tension and the probability of hydrogen bonding near the vapour-liquid interface increase with the increase of electric field strength. And the viscosity also increases under an external electric field. The results confirm that the external electric field has a positive effect on the performance of bubbles in air flotation, which may provide useful guidance for the combination of electric field and air flotation technology. |
---|---|
ISSN: | 1005-9040 2210-3171 |
DOI: | 10.1007/s40242-018-8195-x |