Loading…

On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae)

In aquatic environments diffusivity is low and CO2 availability can limit plant growth. The hypothesis that natural selection has favored morphological features that reduce resistance to diffusion of CO2 was tested using three phylogenetically independent species pairs from the genus Sphagnum (S. ma...

Full description

Saved in:
Bibliographic Details
Published in:American journal of botany 1995-07, Vol.82 (7), p.833-846
Main Authors: Rice, S.K. (Duke University, Durham, NC.), Schuepp, P.H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2339-3389c0b4bb57074ac108cc37b56d397a9469d6ad5f83a456c44c70657d11458b3
cites cdi_FETCH-LOGICAL-c2339-3389c0b4bb57074ac108cc37b56d397a9469d6ad5f83a456c44c70657d11458b3
container_end_page 846
container_issue 7
container_start_page 833
container_title American journal of botany
container_volume 82
creator Rice, S.K. (Duke University, Durham, NC.)
Schuepp, P.H
description In aquatic environments diffusivity is low and CO2 availability can limit plant growth. The hypothesis that natural selection has favored morphological features that reduce resistance to diffusion of CO2 was tested using three phylogenetically independent species pairs from the genus Sphagnum (S. macrophyllum and S. strictum; S. portoricense and S. papillosum; and S. trinitense and S. recurvum). The aquatic (former) and the nonaquatic (latter) species were grown submerged and emerged in a common garden and used for studies of form and function. Aquatic taxa all had similar morphological features that included larger, thinner branch leaves arranged at lower densities and photosynthetic cells more greatly exposed at the leaf surface. The relationship between observed branch and leaf morphology and boundary layer resistance in the S. trinitense-S. recurvum species pair was assessed by measuring diffusion and convection of ions onto nickel-plated models in a variable-speed electrochemical fluid tunnel. For all flow speeds and orientations, the aquatic S. trinitense model had thinner boundary layers than the nonaquatic S. recurvum model. Analysis of stable isotopes of carbon from the growth experiment corroborated results from the fluid-tunnel experiments. The aquatic taxa all had lower delta 13C values when grown submerged compared to their nonaquatic pair with the exception of the nonaquatic S. strictum, which was removed due to low growth rates. These results indicate that aquatic species did experience lower overall resistance to CO2 uptake than nonaquatic taxa. Our observations suggest that aquatic habitats do select for morphological features that lower resistance to gas exchange
doi_str_mv 10.1002/j.1537-2197.1995.tb15699.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_215874945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2445969</jstor_id><sourcerecordid>2445969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2339-3389c0b4bb57074ac108cc37b56d397a9469d6ad5f83a456c44c70657d11458b3</originalsourceid><addsrcrecordid>eNqVkE1P2zAAhq1pSOuAP4B2sHraDgn-jOPdChqwCYkD9Gw5jtM6SuPWTjb673EaxH0nv9b7YfkBYIlRjhEi122OORUZwVLkWEqeDxXmhZT56yew-LA-gwVK6UxiQr6ArzG26SqZJAvgn3o4bC20xnd-44zuoO5raP_6bhyc73U4wug2vWuS1xsLfQOrkNT2lOusbuDOh_12qh-h66E-jHpwBj7vt3rTjzv4fVbaWG1_XICzRnfRXr6f52B99-vl9iF7fLr_fbt6zAyhVGaUltKgilUVF0gwbTAqjaGi4kVNpdCSFbIudM2bkmrGC8OYEajgosaY8bKi52A57-6DP4w2Dqr1Y-jTk4pgXgomGU-hn3PIBB9jsI3aB7dLX1YYqYmvatUEUU0Q1cRXvfNVr6m8msv_XGeP_9FUqz835KTTxrd5o42DDx8bhDEui8m-mu1Ge6U3wUW1fpacl6ik9A2wMZUb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215874945</pqid></control><display><type>article</type><title>On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae)</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Rice, S.K. (Duke University, Durham, NC.) ; Schuepp, P.H</creator><creatorcontrib>Rice, S.K. (Duke University, Durham, NC.) ; Schuepp, P.H</creatorcontrib><description>In aquatic environments diffusivity is low and CO2 availability can limit plant growth. The hypothesis that natural selection has favored morphological features that reduce resistance to diffusion of CO2 was tested using three phylogenetically independent species pairs from the genus Sphagnum (S. macrophyllum and S. strictum; S. portoricense and S. papillosum; and S. trinitense and S. recurvum). The aquatic (former) and the nonaquatic (latter) species were grown submerged and emerged in a common garden and used for studies of form and function. Aquatic taxa all had similar morphological features that included larger, thinner branch leaves arranged at lower densities and photosynthetic cells more greatly exposed at the leaf surface. The relationship between observed branch and leaf morphology and boundary layer resistance in the S. trinitense-S. recurvum species pair was assessed by measuring diffusion and convection of ions onto nickel-plated models in a variable-speed electrochemical fluid tunnel. For all flow speeds and orientations, the aquatic S. trinitense model had thinner boundary layers than the nonaquatic S. recurvum model. Analysis of stable isotopes of carbon from the growth experiment corroborated results from the fluid-tunnel experiments. The aquatic taxa all had lower delta 13C values when grown submerged compared to their nonaquatic pair with the exception of the nonaquatic S. strictum, which was removed due to low growth rates. These results indicate that aquatic species did experience lower overall resistance to CO2 uptake than nonaquatic taxa. Our observations suggest that aquatic habitats do select for morphological features that lower resistance to gas exchange</description><identifier>ISSN: 0002-9122</identifier><identifier>EISSN: 1537-2197</identifier><identifier>DOI: 10.1002/j.1537-2197.1995.tb15699.x</identifier><identifier>CODEN: AJBOAA</identifier><language>eng</language><publisher>Columbus: American Botanical Society</publisher><subject>ANATOMIA DE LA PLANTA ; ANATOMIE VEGETALE ; Aquatic life ; Biological taxonomies ; Botany ; Boundary layer thickness ; Boundary layers ; BRANCHE ; Carbon dioxide ; CRECIMIENTO ; CROISSANCE ; DIOXIDO DE CARBONO ; DIOXYDE DE CARBONE ; ECHANGE GAZEUX ; Evolution ; FEUILLE ; FILOGENIA ; Flowers &amp; plants ; FOTOSINTESIS ; HOJAS ; INTERCAMBIO DE GASES ; Leaves ; Mass transfer ; MATEMATICAS ; MATHEMATIQUE ; MODELE MATHEMATIQUE ; MODELOS MATEMATICOS ; PHOTOSYNTHESE ; PHYLOGENIE ; Plant growth ; Plant morphology ; PLANTAS ACUATICAS ; PLANTE AQUATIQUE ; Plants ; RAMAS ; SELECCION NATURAL ; SELECTION NATURELLE ; SPHAGNUM ; Structure and Development ; Taxa</subject><ispartof>American journal of botany, 1995-07, Vol.82 (7), p.833-846</ispartof><rights>Copyright 1995 Botanical Society of America, Inc.</rights><rights>1995 Botanical Society of America</rights><rights>Copyright Botanical Society of America, Inc. Jul 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2339-3389c0b4bb57074ac108cc37b56d397a9469d6ad5f83a456c44c70657d11458b3</citedby><cites>FETCH-LOGICAL-c2339-3389c0b4bb57074ac108cc37b56d397a9469d6ad5f83a456c44c70657d11458b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2445969$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2445969$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Rice, S.K. (Duke University, Durham, NC.)</creatorcontrib><creatorcontrib>Schuepp, P.H</creatorcontrib><title>On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae)</title><title>American journal of botany</title><description>In aquatic environments diffusivity is low and CO2 availability can limit plant growth. The hypothesis that natural selection has favored morphological features that reduce resistance to diffusion of CO2 was tested using three phylogenetically independent species pairs from the genus Sphagnum (S. macrophyllum and S. strictum; S. portoricense and S. papillosum; and S. trinitense and S. recurvum). The aquatic (former) and the nonaquatic (latter) species were grown submerged and emerged in a common garden and used for studies of form and function. Aquatic taxa all had similar morphological features that included larger, thinner branch leaves arranged at lower densities and photosynthetic cells more greatly exposed at the leaf surface. The relationship between observed branch and leaf morphology and boundary layer resistance in the S. trinitense-S. recurvum species pair was assessed by measuring diffusion and convection of ions onto nickel-plated models in a variable-speed electrochemical fluid tunnel. For all flow speeds and orientations, the aquatic S. trinitense model had thinner boundary layers than the nonaquatic S. recurvum model. Analysis of stable isotopes of carbon from the growth experiment corroborated results from the fluid-tunnel experiments. The aquatic taxa all had lower delta 13C values when grown submerged compared to their nonaquatic pair with the exception of the nonaquatic S. strictum, which was removed due to low growth rates. These results indicate that aquatic species did experience lower overall resistance to CO2 uptake than nonaquatic taxa. Our observations suggest that aquatic habitats do select for morphological features that lower resistance to gas exchange</description><subject>ANATOMIA DE LA PLANTA</subject><subject>ANATOMIE VEGETALE</subject><subject>Aquatic life</subject><subject>Biological taxonomies</subject><subject>Botany</subject><subject>Boundary layer thickness</subject><subject>Boundary layers</subject><subject>BRANCHE</subject><subject>Carbon dioxide</subject><subject>CRECIMIENTO</subject><subject>CROISSANCE</subject><subject>DIOXIDO DE CARBONO</subject><subject>DIOXYDE DE CARBONE</subject><subject>ECHANGE GAZEUX</subject><subject>Evolution</subject><subject>FEUILLE</subject><subject>FILOGENIA</subject><subject>Flowers &amp; plants</subject><subject>FOTOSINTESIS</subject><subject>HOJAS</subject><subject>INTERCAMBIO DE GASES</subject><subject>Leaves</subject><subject>Mass transfer</subject><subject>MATEMATICAS</subject><subject>MATHEMATIQUE</subject><subject>MODELE MATHEMATIQUE</subject><subject>MODELOS MATEMATICOS</subject><subject>PHOTOSYNTHESE</subject><subject>PHYLOGENIE</subject><subject>Plant growth</subject><subject>Plant morphology</subject><subject>PLANTAS ACUATICAS</subject><subject>PLANTE AQUATIQUE</subject><subject>Plants</subject><subject>RAMAS</subject><subject>SELECCION NATURAL</subject><subject>SELECTION NATURELLE</subject><subject>SPHAGNUM</subject><subject>Structure and Development</subject><subject>Taxa</subject><issn>0002-9122</issn><issn>1537-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqVkE1P2zAAhq1pSOuAP4B2sHraDgn-jOPdChqwCYkD9Gw5jtM6SuPWTjb673EaxH0nv9b7YfkBYIlRjhEi122OORUZwVLkWEqeDxXmhZT56yew-LA-gwVK6UxiQr6ArzG26SqZJAvgn3o4bC20xnd-44zuoO5raP_6bhyc73U4wug2vWuS1xsLfQOrkNT2lOusbuDOh_12qh-h66E-jHpwBj7vt3rTjzv4fVbaWG1_XICzRnfRXr6f52B99-vl9iF7fLr_fbt6zAyhVGaUltKgilUVF0gwbTAqjaGi4kVNpdCSFbIudM2bkmrGC8OYEajgosaY8bKi52A57-6DP4w2Dqr1Y-jTk4pgXgomGU-hn3PIBB9jsI3aB7dLX1YYqYmvatUEUU0Q1cRXvfNVr6m8msv_XGeP_9FUqz835KTTxrd5o42DDx8bhDEui8m-mu1Ge6U3wUW1fpacl6ik9A2wMZUb</recordid><startdate>199507</startdate><enddate>199507</enddate><creator>Rice, S.K. (Duke University, Durham, NC.)</creator><creator>Schuepp, P.H</creator><general>American Botanical Society</general><general>Botanical Society of America, Inc</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>199507</creationdate><title>On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae)</title><author>Rice, S.K. (Duke University, Durham, NC.) ; Schuepp, P.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2339-3389c0b4bb57074ac108cc37b56d397a9469d6ad5f83a456c44c70657d11458b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>ANATOMIA DE LA PLANTA</topic><topic>ANATOMIE VEGETALE</topic><topic>Aquatic life</topic><topic>Biological taxonomies</topic><topic>Botany</topic><topic>Boundary layer thickness</topic><topic>Boundary layers</topic><topic>BRANCHE</topic><topic>Carbon dioxide</topic><topic>CRECIMIENTO</topic><topic>CROISSANCE</topic><topic>DIOXIDO DE CARBONO</topic><topic>DIOXYDE DE CARBONE</topic><topic>ECHANGE GAZEUX</topic><topic>Evolution</topic><topic>FEUILLE</topic><topic>FILOGENIA</topic><topic>Flowers &amp; plants</topic><topic>FOTOSINTESIS</topic><topic>HOJAS</topic><topic>INTERCAMBIO DE GASES</topic><topic>Leaves</topic><topic>Mass transfer</topic><topic>MATEMATICAS</topic><topic>MATHEMATIQUE</topic><topic>MODELE MATHEMATIQUE</topic><topic>MODELOS MATEMATICOS</topic><topic>PHOTOSYNTHESE</topic><topic>PHYLOGENIE</topic><topic>Plant growth</topic><topic>Plant morphology</topic><topic>PLANTAS ACUATICAS</topic><topic>PLANTE AQUATIQUE</topic><topic>Plants</topic><topic>RAMAS</topic><topic>SELECCION NATURAL</topic><topic>SELECTION NATURELLE</topic><topic>SPHAGNUM</topic><topic>Structure and Development</topic><topic>Taxa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rice, S.K. (Duke University, Durham, NC.)</creatorcontrib><creatorcontrib>Schuepp, P.H</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>American journal of botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rice, S.K. (Duke University, Durham, NC.)</au><au>Schuepp, P.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae)</atitle><jtitle>American journal of botany</jtitle><date>1995-07</date><risdate>1995</risdate><volume>82</volume><issue>7</issue><spage>833</spage><epage>846</epage><pages>833-846</pages><issn>0002-9122</issn><eissn>1537-2197</eissn><coden>AJBOAA</coden><abstract>In aquatic environments diffusivity is low and CO2 availability can limit plant growth. The hypothesis that natural selection has favored morphological features that reduce resistance to diffusion of CO2 was tested using three phylogenetically independent species pairs from the genus Sphagnum (S. macrophyllum and S. strictum; S. portoricense and S. papillosum; and S. trinitense and S. recurvum). The aquatic (former) and the nonaquatic (latter) species were grown submerged and emerged in a common garden and used for studies of form and function. Aquatic taxa all had similar morphological features that included larger, thinner branch leaves arranged at lower densities and photosynthetic cells more greatly exposed at the leaf surface. The relationship between observed branch and leaf morphology and boundary layer resistance in the S. trinitense-S. recurvum species pair was assessed by measuring diffusion and convection of ions onto nickel-plated models in a variable-speed electrochemical fluid tunnel. For all flow speeds and orientations, the aquatic S. trinitense model had thinner boundary layers than the nonaquatic S. recurvum model. Analysis of stable isotopes of carbon from the growth experiment corroborated results from the fluid-tunnel experiments. The aquatic taxa all had lower delta 13C values when grown submerged compared to their nonaquatic pair with the exception of the nonaquatic S. strictum, which was removed due to low growth rates. These results indicate that aquatic species did experience lower overall resistance to CO2 uptake than nonaquatic taxa. Our observations suggest that aquatic habitats do select for morphological features that lower resistance to gas exchange</abstract><cop>Columbus</cop><pub>American Botanical Society</pub><doi>10.1002/j.1537-2197.1995.tb15699.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9122
ispartof American journal of botany, 1995-07, Vol.82 (7), p.833-846
issn 0002-9122
1537-2197
language eng
recordid cdi_proquest_journals_215874945
source JSTOR Archival Journals and Primary Sources Collection
subjects ANATOMIA DE LA PLANTA
ANATOMIE VEGETALE
Aquatic life
Biological taxonomies
Botany
Boundary layer thickness
Boundary layers
BRANCHE
Carbon dioxide
CRECIMIENTO
CROISSANCE
DIOXIDO DE CARBONO
DIOXYDE DE CARBONE
ECHANGE GAZEUX
Evolution
FEUILLE
FILOGENIA
Flowers & plants
FOTOSINTESIS
HOJAS
INTERCAMBIO DE GASES
Leaves
Mass transfer
MATEMATICAS
MATHEMATIQUE
MODELE MATHEMATIQUE
MODELOS MATEMATICOS
PHOTOSYNTHESE
PHYLOGENIE
Plant growth
Plant morphology
PLANTAS ACUATICAS
PLANTE AQUATIQUE
Plants
RAMAS
SELECCION NATURAL
SELECTION NATURELLE
SPHAGNUM
Structure and Development
Taxa
title On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20ecological%20and%20evolutionary%20significance%20of%20branch%20and%20leaf%20morphology%20in%20aquatic%20Sphagnum%20(Sphagnaceae)&rft.jtitle=American%20journal%20of%20botany&rft.au=Rice,%20S.K.%20(Duke%20University,%20Durham,%20NC.)&rft.date=1995-07&rft.volume=82&rft.issue=7&rft.spage=833&rft.epage=846&rft.pages=833-846&rft.issn=0002-9122&rft.eissn=1537-2197&rft.coden=AJBOAA&rft_id=info:doi/10.1002/j.1537-2197.1995.tb15699.x&rft_dat=%3Cjstor_proqu%3E2445969%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2339-3389c0b4bb57074ac108cc37b56d397a9469d6ad5f83a456c44c70657d11458b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215874945&rft_id=info:pmid/&rft_jstor_id=2445969&rfr_iscdi=true