Loading…
On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae)
In aquatic environments diffusivity is low and CO2 availability can limit plant growth. The hypothesis that natural selection has favored morphological features that reduce resistance to diffusion of CO2 was tested using three phylogenetically independent species pairs from the genus Sphagnum (S. ma...
Saved in:
Published in: | American journal of botany 1995-07, Vol.82 (7), p.833-846 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2339-3389c0b4bb57074ac108cc37b56d397a9469d6ad5f83a456c44c70657d11458b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2339-3389c0b4bb57074ac108cc37b56d397a9469d6ad5f83a456c44c70657d11458b3 |
container_end_page | 846 |
container_issue | 7 |
container_start_page | 833 |
container_title | American journal of botany |
container_volume | 82 |
creator | Rice, S.K. (Duke University, Durham, NC.) Schuepp, P.H |
description | In aquatic environments diffusivity is low and CO2 availability can limit plant growth. The hypothesis that natural selection has favored morphological features that reduce resistance to diffusion of CO2 was tested using three phylogenetically independent species pairs from the genus Sphagnum (S. macrophyllum and S. strictum; S. portoricense and S. papillosum; and S. trinitense and S. recurvum). The aquatic (former) and the nonaquatic (latter) species were grown submerged and emerged in a common garden and used for studies of form and function. Aquatic taxa all had similar morphological features that included larger, thinner branch leaves arranged at lower densities and photosynthetic cells more greatly exposed at the leaf surface. The relationship between observed branch and leaf morphology and boundary layer resistance in the S. trinitense-S. recurvum species pair was assessed by measuring diffusion and convection of ions onto nickel-plated models in a variable-speed electrochemical fluid tunnel. For all flow speeds and orientations, the aquatic S. trinitense model had thinner boundary layers than the nonaquatic S. recurvum model. Analysis of stable isotopes of carbon from the growth experiment corroborated results from the fluid-tunnel experiments. The aquatic taxa all had lower delta 13C values when grown submerged compared to their nonaquatic pair with the exception of the nonaquatic S. strictum, which was removed due to low growth rates. These results indicate that aquatic species did experience lower overall resistance to CO2 uptake than nonaquatic taxa. Our observations suggest that aquatic habitats do select for morphological features that lower resistance to gas exchange |
doi_str_mv | 10.1002/j.1537-2197.1995.tb15699.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_215874945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2445969</jstor_id><sourcerecordid>2445969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2339-3389c0b4bb57074ac108cc37b56d397a9469d6ad5f83a456c44c70657d11458b3</originalsourceid><addsrcrecordid>eNqVkE1P2zAAhq1pSOuAP4B2sHraDgn-jOPdChqwCYkD9Gw5jtM6SuPWTjb673EaxH0nv9b7YfkBYIlRjhEi122OORUZwVLkWEqeDxXmhZT56yew-LA-gwVK6UxiQr6ArzG26SqZJAvgn3o4bC20xnd-44zuoO5raP_6bhyc73U4wug2vWuS1xsLfQOrkNT2lOusbuDOh_12qh-h66E-jHpwBj7vt3rTjzv4fVbaWG1_XICzRnfRXr6f52B99-vl9iF7fLr_fbt6zAyhVGaUltKgilUVF0gwbTAqjaGi4kVNpdCSFbIudM2bkmrGC8OYEajgosaY8bKi52A57-6DP4w2Dqr1Y-jTk4pgXgomGU-hn3PIBB9jsI3aB7dLX1YYqYmvatUEUU0Q1cRXvfNVr6m8msv_XGeP_9FUqz835KTTxrd5o42DDx8bhDEui8m-mu1Ge6U3wUW1fpacl6ik9A2wMZUb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215874945</pqid></control><display><type>article</type><title>On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae)</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Rice, S.K. (Duke University, Durham, NC.) ; Schuepp, P.H</creator><creatorcontrib>Rice, S.K. (Duke University, Durham, NC.) ; Schuepp, P.H</creatorcontrib><description>In aquatic environments diffusivity is low and CO2 availability can limit plant growth. The hypothesis that natural selection has favored morphological features that reduce resistance to diffusion of CO2 was tested using three phylogenetically independent species pairs from the genus Sphagnum (S. macrophyllum and S. strictum; S. portoricense and S. papillosum; and S. trinitense and S. recurvum). The aquatic (former) and the nonaquatic (latter) species were grown submerged and emerged in a common garden and used for studies of form and function. Aquatic taxa all had similar morphological features that included larger, thinner branch leaves arranged at lower densities and photosynthetic cells more greatly exposed at the leaf surface. The relationship between observed branch and leaf morphology and boundary layer resistance in the S. trinitense-S. recurvum species pair was assessed by measuring diffusion and convection of ions onto nickel-plated models in a variable-speed electrochemical fluid tunnel. For all flow speeds and orientations, the aquatic S. trinitense model had thinner boundary layers than the nonaquatic S. recurvum model. Analysis of stable isotopes of carbon from the growth experiment corroborated results from the fluid-tunnel experiments. The aquatic taxa all had lower delta 13C values when grown submerged compared to their nonaquatic pair with the exception of the nonaquatic S. strictum, which was removed due to low growth rates. These results indicate that aquatic species did experience lower overall resistance to CO2 uptake than nonaquatic taxa. Our observations suggest that aquatic habitats do select for morphological features that lower resistance to gas exchange</description><identifier>ISSN: 0002-9122</identifier><identifier>EISSN: 1537-2197</identifier><identifier>DOI: 10.1002/j.1537-2197.1995.tb15699.x</identifier><identifier>CODEN: AJBOAA</identifier><language>eng</language><publisher>Columbus: American Botanical Society</publisher><subject>ANATOMIA DE LA PLANTA ; ANATOMIE VEGETALE ; Aquatic life ; Biological taxonomies ; Botany ; Boundary layer thickness ; Boundary layers ; BRANCHE ; Carbon dioxide ; CRECIMIENTO ; CROISSANCE ; DIOXIDO DE CARBONO ; DIOXYDE DE CARBONE ; ECHANGE GAZEUX ; Evolution ; FEUILLE ; FILOGENIA ; Flowers & plants ; FOTOSINTESIS ; HOJAS ; INTERCAMBIO DE GASES ; Leaves ; Mass transfer ; MATEMATICAS ; MATHEMATIQUE ; MODELE MATHEMATIQUE ; MODELOS MATEMATICOS ; PHOTOSYNTHESE ; PHYLOGENIE ; Plant growth ; Plant morphology ; PLANTAS ACUATICAS ; PLANTE AQUATIQUE ; Plants ; RAMAS ; SELECCION NATURAL ; SELECTION NATURELLE ; SPHAGNUM ; Structure and Development ; Taxa</subject><ispartof>American journal of botany, 1995-07, Vol.82 (7), p.833-846</ispartof><rights>Copyright 1995 Botanical Society of America, Inc.</rights><rights>1995 Botanical Society of America</rights><rights>Copyright Botanical Society of America, Inc. Jul 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2339-3389c0b4bb57074ac108cc37b56d397a9469d6ad5f83a456c44c70657d11458b3</citedby><cites>FETCH-LOGICAL-c2339-3389c0b4bb57074ac108cc37b56d397a9469d6ad5f83a456c44c70657d11458b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2445969$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2445969$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Rice, S.K. (Duke University, Durham, NC.)</creatorcontrib><creatorcontrib>Schuepp, P.H</creatorcontrib><title>On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae)</title><title>American journal of botany</title><description>In aquatic environments diffusivity is low and CO2 availability can limit plant growth. The hypothesis that natural selection has favored morphological features that reduce resistance to diffusion of CO2 was tested using three phylogenetically independent species pairs from the genus Sphagnum (S. macrophyllum and S. strictum; S. portoricense and S. papillosum; and S. trinitense and S. recurvum). The aquatic (former) and the nonaquatic (latter) species were grown submerged and emerged in a common garden and used for studies of form and function. Aquatic taxa all had similar morphological features that included larger, thinner branch leaves arranged at lower densities and photosynthetic cells more greatly exposed at the leaf surface. The relationship between observed branch and leaf morphology and boundary layer resistance in the S. trinitense-S. recurvum species pair was assessed by measuring diffusion and convection of ions onto nickel-plated models in a variable-speed electrochemical fluid tunnel. For all flow speeds and orientations, the aquatic S. trinitense model had thinner boundary layers than the nonaquatic S. recurvum model. Analysis of stable isotopes of carbon from the growth experiment corroborated results from the fluid-tunnel experiments. The aquatic taxa all had lower delta 13C values when grown submerged compared to their nonaquatic pair with the exception of the nonaquatic S. strictum, which was removed due to low growth rates. These results indicate that aquatic species did experience lower overall resistance to CO2 uptake than nonaquatic taxa. Our observations suggest that aquatic habitats do select for morphological features that lower resistance to gas exchange</description><subject>ANATOMIA DE LA PLANTA</subject><subject>ANATOMIE VEGETALE</subject><subject>Aquatic life</subject><subject>Biological taxonomies</subject><subject>Botany</subject><subject>Boundary layer thickness</subject><subject>Boundary layers</subject><subject>BRANCHE</subject><subject>Carbon dioxide</subject><subject>CRECIMIENTO</subject><subject>CROISSANCE</subject><subject>DIOXIDO DE CARBONO</subject><subject>DIOXYDE DE CARBONE</subject><subject>ECHANGE GAZEUX</subject><subject>Evolution</subject><subject>FEUILLE</subject><subject>FILOGENIA</subject><subject>Flowers & plants</subject><subject>FOTOSINTESIS</subject><subject>HOJAS</subject><subject>INTERCAMBIO DE GASES</subject><subject>Leaves</subject><subject>Mass transfer</subject><subject>MATEMATICAS</subject><subject>MATHEMATIQUE</subject><subject>MODELE MATHEMATIQUE</subject><subject>MODELOS MATEMATICOS</subject><subject>PHOTOSYNTHESE</subject><subject>PHYLOGENIE</subject><subject>Plant growth</subject><subject>Plant morphology</subject><subject>PLANTAS ACUATICAS</subject><subject>PLANTE AQUATIQUE</subject><subject>Plants</subject><subject>RAMAS</subject><subject>SELECCION NATURAL</subject><subject>SELECTION NATURELLE</subject><subject>SPHAGNUM</subject><subject>Structure and Development</subject><subject>Taxa</subject><issn>0002-9122</issn><issn>1537-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqVkE1P2zAAhq1pSOuAP4B2sHraDgn-jOPdChqwCYkD9Gw5jtM6SuPWTjb673EaxH0nv9b7YfkBYIlRjhEi122OORUZwVLkWEqeDxXmhZT56yew-LA-gwVK6UxiQr6ArzG26SqZJAvgn3o4bC20xnd-44zuoO5raP_6bhyc73U4wug2vWuS1xsLfQOrkNT2lOusbuDOh_12qh-h66E-jHpwBj7vt3rTjzv4fVbaWG1_XICzRnfRXr6f52B99-vl9iF7fLr_fbt6zAyhVGaUltKgilUVF0gwbTAqjaGi4kVNpdCSFbIudM2bkmrGC8OYEajgosaY8bKi52A57-6DP4w2Dqr1Y-jTk4pgXgomGU-hn3PIBB9jsI3aB7dLX1YYqYmvatUEUU0Q1cRXvfNVr6m8msv_XGeP_9FUqz835KTTxrd5o42DDx8bhDEui8m-mu1Ge6U3wUW1fpacl6ik9A2wMZUb</recordid><startdate>199507</startdate><enddate>199507</enddate><creator>Rice, S.K. (Duke University, Durham, NC.)</creator><creator>Schuepp, P.H</creator><general>American Botanical Society</general><general>Botanical Society of America, Inc</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>199507</creationdate><title>On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae)</title><author>Rice, S.K. (Duke University, Durham, NC.) ; Schuepp, P.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2339-3389c0b4bb57074ac108cc37b56d397a9469d6ad5f83a456c44c70657d11458b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>ANATOMIA DE LA PLANTA</topic><topic>ANATOMIE VEGETALE</topic><topic>Aquatic life</topic><topic>Biological taxonomies</topic><topic>Botany</topic><topic>Boundary layer thickness</topic><topic>Boundary layers</topic><topic>BRANCHE</topic><topic>Carbon dioxide</topic><topic>CRECIMIENTO</topic><topic>CROISSANCE</topic><topic>DIOXIDO DE CARBONO</topic><topic>DIOXYDE DE CARBONE</topic><topic>ECHANGE GAZEUX</topic><topic>Evolution</topic><topic>FEUILLE</topic><topic>FILOGENIA</topic><topic>Flowers & plants</topic><topic>FOTOSINTESIS</topic><topic>HOJAS</topic><topic>INTERCAMBIO DE GASES</topic><topic>Leaves</topic><topic>Mass transfer</topic><topic>MATEMATICAS</topic><topic>MATHEMATIQUE</topic><topic>MODELE MATHEMATIQUE</topic><topic>MODELOS MATEMATICOS</topic><topic>PHOTOSYNTHESE</topic><topic>PHYLOGENIE</topic><topic>Plant growth</topic><topic>Plant morphology</topic><topic>PLANTAS ACUATICAS</topic><topic>PLANTE AQUATIQUE</topic><topic>Plants</topic><topic>RAMAS</topic><topic>SELECCION NATURAL</topic><topic>SELECTION NATURELLE</topic><topic>SPHAGNUM</topic><topic>Structure and Development</topic><topic>Taxa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rice, S.K. (Duke University, Durham, NC.)</creatorcontrib><creatorcontrib>Schuepp, P.H</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>American journal of botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rice, S.K. (Duke University, Durham, NC.)</au><au>Schuepp, P.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae)</atitle><jtitle>American journal of botany</jtitle><date>1995-07</date><risdate>1995</risdate><volume>82</volume><issue>7</issue><spage>833</spage><epage>846</epage><pages>833-846</pages><issn>0002-9122</issn><eissn>1537-2197</eissn><coden>AJBOAA</coden><abstract>In aquatic environments diffusivity is low and CO2 availability can limit plant growth. The hypothesis that natural selection has favored morphological features that reduce resistance to diffusion of CO2 was tested using three phylogenetically independent species pairs from the genus Sphagnum (S. macrophyllum and S. strictum; S. portoricense and S. papillosum; and S. trinitense and S. recurvum). The aquatic (former) and the nonaquatic (latter) species were grown submerged and emerged in a common garden and used for studies of form and function. Aquatic taxa all had similar morphological features that included larger, thinner branch leaves arranged at lower densities and photosynthetic cells more greatly exposed at the leaf surface. The relationship between observed branch and leaf morphology and boundary layer resistance in the S. trinitense-S. recurvum species pair was assessed by measuring diffusion and convection of ions onto nickel-plated models in a variable-speed electrochemical fluid tunnel. For all flow speeds and orientations, the aquatic S. trinitense model had thinner boundary layers than the nonaquatic S. recurvum model. Analysis of stable isotopes of carbon from the growth experiment corroborated results from the fluid-tunnel experiments. The aquatic taxa all had lower delta 13C values when grown submerged compared to their nonaquatic pair with the exception of the nonaquatic S. strictum, which was removed due to low growth rates. These results indicate that aquatic species did experience lower overall resistance to CO2 uptake than nonaquatic taxa. Our observations suggest that aquatic habitats do select for morphological features that lower resistance to gas exchange</abstract><cop>Columbus</cop><pub>American Botanical Society</pub><doi>10.1002/j.1537-2197.1995.tb15699.x</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9122 |
ispartof | American journal of botany, 1995-07, Vol.82 (7), p.833-846 |
issn | 0002-9122 1537-2197 |
language | eng |
recordid | cdi_proquest_journals_215874945 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | ANATOMIA DE LA PLANTA ANATOMIE VEGETALE Aquatic life Biological taxonomies Botany Boundary layer thickness Boundary layers BRANCHE Carbon dioxide CRECIMIENTO CROISSANCE DIOXIDO DE CARBONO DIOXYDE DE CARBONE ECHANGE GAZEUX Evolution FEUILLE FILOGENIA Flowers & plants FOTOSINTESIS HOJAS INTERCAMBIO DE GASES Leaves Mass transfer MATEMATICAS MATHEMATIQUE MODELE MATHEMATIQUE MODELOS MATEMATICOS PHOTOSYNTHESE PHYLOGENIE Plant growth Plant morphology PLANTAS ACUATICAS PLANTE AQUATIQUE Plants RAMAS SELECCION NATURAL SELECTION NATURELLE SPHAGNUM Structure and Development Taxa |
title | On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20ecological%20and%20evolutionary%20significance%20of%20branch%20and%20leaf%20morphology%20in%20aquatic%20Sphagnum%20(Sphagnaceae)&rft.jtitle=American%20journal%20of%20botany&rft.au=Rice,%20S.K.%20(Duke%20University,%20Durham,%20NC.)&rft.date=1995-07&rft.volume=82&rft.issue=7&rft.spage=833&rft.epage=846&rft.pages=833-846&rft.issn=0002-9122&rft.eissn=1537-2197&rft.coden=AJBOAA&rft_id=info:doi/10.1002/j.1537-2197.1995.tb15699.x&rft_dat=%3Cjstor_proqu%3E2445969%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2339-3389c0b4bb57074ac108cc37b56d397a9469d6ad5f83a456c44c70657d11458b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215874945&rft_id=info:pmid/&rft_jstor_id=2445969&rfr_iscdi=true |