Loading…

A Series Voltage Regulator for the Radial DC Microgrid

The concept of a novel series voltage regulator (SVR) for controlling the dc-bus voltage of a radial dc microgrid is presented in this paper. The proposed SVR uses a dual-active-bridge dc-dc converter followed by a full-bridge dc-dc converter. It injects dynamic voltage in series with the dc grid to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on sustainable energy 2019-01, Vol.10 (1), p.127-136
Main Authors: Vuyyuru, Umamaheswararao, Maiti, Suman, Chakraborty, Chandan, Pal, Bikash C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The concept of a novel series voltage regulator (SVR) for controlling the dc-bus voltage of a radial dc microgrid is presented in this paper. The proposed SVR uses a dual-active-bridge dc-dc converter followed by a full-bridge dc-dc converter. It injects dynamic voltage in series with the dc grid to compensate resistive drop over the network. As a result, the voltage level at the different points of the grid becomes independent of load variation and stays within the specified limit. Note that the required power rating of the SVR is very low (say 2.7%) compared to the load demand considering 5% voltage regulation. In this paper, the voltage regulator is connected at the midpoint of the grid, but it may be connected in some other locations to get optimal rating of the same. The proposed configuration is simulated in MATLAB/SIMULINK at a 380-V level to check the dynamic performance under various operating conditions. A scaled-down version (at 30-V level) of the proposed system is developed in the laboratory to experimentally validate the concept. The results show the effectiveness of such a voltage regulator for the radial dc microgrid, especially under critical load condition.
ISSN:1949-3029
1949-3037
DOI:10.1109/TSTE.2018.2828164