Loading…
Duality-Free Decomposition Based Data-Driven Stochastic Security-Constrained Unit Commitment
To incorporate the superiority of both stochastic and robust approaches, a data-driven stochastic optimization is employed to solve the security-constrained unit commitment model. This approach makes the most use of the historical data to generate a set of possible probability distributions for wind...
Saved in:
Published in: | IEEE transactions on sustainable energy 2019-01, Vol.10 (1), p.82-93 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-6d7318607ad3be051d5c429b1c04de321df5b322ea841bc8534ef1b4ab3a3d363 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-6d7318607ad3be051d5c429b1c04de321df5b322ea841bc8534ef1b4ab3a3d363 |
container_end_page | 93 |
container_issue | 1 |
container_start_page | 82 |
container_title | IEEE transactions on sustainable energy |
container_volume | 10 |
creator | Ding, Tao Yang, Qingrun Liu, Xiyuan Huang, Can Yang, Yongheng Wang, Min Blaabjerg, Frede |
description | To incorporate the superiority of both stochastic and robust approaches, a data-driven stochastic optimization is employed to solve the security-constrained unit commitment model. This approach makes the most use of the historical data to generate a set of possible probability distributions for wind power outputs and then it optimizes the unit commitment under the worst-case probability distribution. However, this model suffers from huge computational burden, as a large number of scenarios are considered. To tackle this issue, a duality-free decomposition method is proposed in this paper. This approach does not require doing duality, which can save a large set of dual variables and constraints, and therefore reduces the computational burden. In addition, the inner max-min problem has a special mathematical structure, where the scenarios have the similar constraint. Thus, the max-min problem can be decomposed into independent subproblems to be solved in parallel, which further improves the computational efficiency. A numerical study on an IEEE 118-bus system with practical data of a wind power system has demonstrated the effectiveness of the proposal. |
doi_str_mv | 10.1109/TSTE.2018.2825361 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2158906625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8334604</ieee_id><sourcerecordid>2158906625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-6d7318607ad3be051d5c429b1c04de321df5b322ea841bc8534ef1b4ab3a3d363</originalsourceid><addsrcrecordid>eNo9kEFrwzAMhc3YYKXrDxi7BHZOZ1tOmhy3pN0GhR3a3gbGcRTm0sSd7Qz675fQUl2kw3vS00fII6Nzxmj-st1sl3NOWTbnGU8gZTdkwnKRx0BhcXudeX5PZt7v6VAAkAKdkO-yVwcTTvHKIUYlatserTfB2C56Ux7rqFRBxaUzf9hFm2D1j_LB6GiDunejsbCdD06ZbtDuOhOiwratCS124YHcNergcXbpU7JbLbfFR7z-ev8sXtexHlKEOK0XwLKULlQNFdKE1YkWPK-YpqJG4Kxukgo4R5UJVuksAYENq4SqQEE9_DElz-e9R2d_e_RB7m3vuuGk5CzJcpqmA5YpYWeVdtZ7h408OtMqd5KMypGjHDnKkaO8cBw8T2ePQcSrPgMQKRXwD1BVbuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158906625</pqid></control><display><type>article</type><title>Duality-Free Decomposition Based Data-Driven Stochastic Security-Constrained Unit Commitment</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ding, Tao ; Yang, Qingrun ; Liu, Xiyuan ; Huang, Can ; Yang, Yongheng ; Wang, Min ; Blaabjerg, Frede</creator><creatorcontrib>Ding, Tao ; Yang, Qingrun ; Liu, Xiyuan ; Huang, Can ; Yang, Yongheng ; Wang, Min ; Blaabjerg, Frede</creatorcontrib><description>To incorporate the superiority of both stochastic and robust approaches, a data-driven stochastic optimization is employed to solve the security-constrained unit commitment model. This approach makes the most use of the historical data to generate a set of possible probability distributions for wind power outputs and then it optimizes the unit commitment under the worst-case probability distribution. However, this model suffers from huge computational burden, as a large number of scenarios are considered. To tackle this issue, a duality-free decomposition method is proposed in this paper. This approach does not require doing duality, which can save a large set of dual variables and constraints, and therefore reduces the computational burden. In addition, the inner max-min problem has a special mathematical structure, where the scenarios have the similar constraint. Thus, the max-min problem can be decomposed into independent subproblems to be solved in parallel, which further improves the computational efficiency. A numerical study on an IEEE 118-bus system with practical data of a wind power system has demonstrated the effectiveness of the proposal.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2018.2825361</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Computer applications ; Computing time ; Constraints ; Cybersecurity ; Data buses ; Data-driven stochastic optimization ; Decomposition ; distributionally robust optimization ; duality-free decomposition ; Mathematical models ; Optimization ; Probability distribution ; Probability theory ; Renewable energy ; Robustness ; Robustness (mathematics) ; Security ; security-constrained unit commitment ; Stochastic processes ; Stochasticity ; Uncertainty ; Unit commitment ; Wind power ; Wind power generation ; Wind speed</subject><ispartof>IEEE transactions on sustainable energy, 2019-01, Vol.10 (1), p.82-93</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-6d7318607ad3be051d5c429b1c04de321df5b322ea841bc8534ef1b4ab3a3d363</citedby><cites>FETCH-LOGICAL-c336t-6d7318607ad3be051d5c429b1c04de321df5b322ea841bc8534ef1b4ab3a3d363</cites><orcidid>0000-0002-1488-4762 ; 0000-0001-9429-6364 ; 0000-0002-5159-4908 ; 0000-0001-8311-7412 ; 0000-0002-7590-0172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8334604$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ding, Tao</creatorcontrib><creatorcontrib>Yang, Qingrun</creatorcontrib><creatorcontrib>Liu, Xiyuan</creatorcontrib><creatorcontrib>Huang, Can</creatorcontrib><creatorcontrib>Yang, Yongheng</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Blaabjerg, Frede</creatorcontrib><title>Duality-Free Decomposition Based Data-Driven Stochastic Security-Constrained Unit Commitment</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>To incorporate the superiority of both stochastic and robust approaches, a data-driven stochastic optimization is employed to solve the security-constrained unit commitment model. This approach makes the most use of the historical data to generate a set of possible probability distributions for wind power outputs and then it optimizes the unit commitment under the worst-case probability distribution. However, this model suffers from huge computational burden, as a large number of scenarios are considered. To tackle this issue, a duality-free decomposition method is proposed in this paper. This approach does not require doing duality, which can save a large set of dual variables and constraints, and therefore reduces the computational burden. In addition, the inner max-min problem has a special mathematical structure, where the scenarios have the similar constraint. Thus, the max-min problem can be decomposed into independent subproblems to be solved in parallel, which further improves the computational efficiency. A numerical study on an IEEE 118-bus system with practical data of a wind power system has demonstrated the effectiveness of the proposal.</description><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computing time</subject><subject>Constraints</subject><subject>Cybersecurity</subject><subject>Data buses</subject><subject>Data-driven stochastic optimization</subject><subject>Decomposition</subject><subject>distributionally robust optimization</subject><subject>duality-free decomposition</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Probability distribution</subject><subject>Probability theory</subject><subject>Renewable energy</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Security</subject><subject>security-constrained unit commitment</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Uncertainty</subject><subject>Unit commitment</subject><subject>Wind power</subject><subject>Wind power generation</subject><subject>Wind speed</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEFrwzAMhc3YYKXrDxi7BHZOZ1tOmhy3pN0GhR3a3gbGcRTm0sSd7Qz675fQUl2kw3vS00fII6Nzxmj-st1sl3NOWTbnGU8gZTdkwnKRx0BhcXudeX5PZt7v6VAAkAKdkO-yVwcTTvHKIUYlatserTfB2C56Ux7rqFRBxaUzf9hFm2D1j_LB6GiDunejsbCdD06ZbtDuOhOiwratCS124YHcNergcXbpU7JbLbfFR7z-ev8sXtexHlKEOK0XwLKULlQNFdKE1YkWPK-YpqJG4Kxukgo4R5UJVuksAYENq4SqQEE9_DElz-e9R2d_e_RB7m3vuuGk5CzJcpqmA5YpYWeVdtZ7h408OtMqd5KMypGjHDnKkaO8cBw8T2ePQcSrPgMQKRXwD1BVbuQ</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Ding, Tao</creator><creator>Yang, Qingrun</creator><creator>Liu, Xiyuan</creator><creator>Huang, Can</creator><creator>Yang, Yongheng</creator><creator>Wang, Min</creator><creator>Blaabjerg, Frede</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1488-4762</orcidid><orcidid>https://orcid.org/0000-0001-9429-6364</orcidid><orcidid>https://orcid.org/0000-0002-5159-4908</orcidid><orcidid>https://orcid.org/0000-0001-8311-7412</orcidid><orcidid>https://orcid.org/0000-0002-7590-0172</orcidid></search><sort><creationdate>201901</creationdate><title>Duality-Free Decomposition Based Data-Driven Stochastic Security-Constrained Unit Commitment</title><author>Ding, Tao ; Yang, Qingrun ; Liu, Xiyuan ; Huang, Can ; Yang, Yongheng ; Wang, Min ; Blaabjerg, Frede</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-6d7318607ad3be051d5c429b1c04de321df5b322ea841bc8534ef1b4ab3a3d363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computing time</topic><topic>Constraints</topic><topic>Cybersecurity</topic><topic>Data buses</topic><topic>Data-driven stochastic optimization</topic><topic>Decomposition</topic><topic>distributionally robust optimization</topic><topic>duality-free decomposition</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Probability distribution</topic><topic>Probability theory</topic><topic>Renewable energy</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Security</topic><topic>security-constrained unit commitment</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Uncertainty</topic><topic>Unit commitment</topic><topic>Wind power</topic><topic>Wind power generation</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Tao</creatorcontrib><creatorcontrib>Yang, Qingrun</creatorcontrib><creatorcontrib>Liu, Xiyuan</creatorcontrib><creatorcontrib>Huang, Can</creatorcontrib><creatorcontrib>Yang, Yongheng</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Blaabjerg, Frede</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Tao</au><au>Yang, Qingrun</au><au>Liu, Xiyuan</au><au>Huang, Can</au><au>Yang, Yongheng</au><au>Wang, Min</au><au>Blaabjerg, Frede</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duality-Free Decomposition Based Data-Driven Stochastic Security-Constrained Unit Commitment</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2019-01</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>82</spage><epage>93</epage><pages>82-93</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>To incorporate the superiority of both stochastic and robust approaches, a data-driven stochastic optimization is employed to solve the security-constrained unit commitment model. This approach makes the most use of the historical data to generate a set of possible probability distributions for wind power outputs and then it optimizes the unit commitment under the worst-case probability distribution. However, this model suffers from huge computational burden, as a large number of scenarios are considered. To tackle this issue, a duality-free decomposition method is proposed in this paper. This approach does not require doing duality, which can save a large set of dual variables and constraints, and therefore reduces the computational burden. In addition, the inner max-min problem has a special mathematical structure, where the scenarios have the similar constraint. Thus, the max-min problem can be decomposed into independent subproblems to be solved in parallel, which further improves the computational efficiency. A numerical study on an IEEE 118-bus system with practical data of a wind power system has demonstrated the effectiveness of the proposal.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2018.2825361</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1488-4762</orcidid><orcidid>https://orcid.org/0000-0001-9429-6364</orcidid><orcidid>https://orcid.org/0000-0002-5159-4908</orcidid><orcidid>https://orcid.org/0000-0001-8311-7412</orcidid><orcidid>https://orcid.org/0000-0002-7590-0172</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3029 |
ispartof | IEEE transactions on sustainable energy, 2019-01, Vol.10 (1), p.82-93 |
issn | 1949-3029 1949-3037 |
language | eng |
recordid | cdi_proquest_journals_2158906625 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Computational modeling Computer applications Computing time Constraints Cybersecurity Data buses Data-driven stochastic optimization Decomposition distributionally robust optimization duality-free decomposition Mathematical models Optimization Probability distribution Probability theory Renewable energy Robustness Robustness (mathematics) Security security-constrained unit commitment Stochastic processes Stochasticity Uncertainty Unit commitment Wind power Wind power generation Wind speed |
title | Duality-Free Decomposition Based Data-Driven Stochastic Security-Constrained Unit Commitment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duality-Free%20Decomposition%20Based%20Data-Driven%20Stochastic%20Security-Constrained%20Unit%20Commitment&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Ding,%20Tao&rft.date=2019-01&rft.volume=10&rft.issue=1&rft.spage=82&rft.epage=93&rft.pages=82-93&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2018.2825361&rft_dat=%3Cproquest_ieee_%3E2158906625%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-6d7318607ad3be051d5c429b1c04de321df5b322ea841bc8534ef1b4ab3a3d363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2158906625&rft_id=info:pmid/&rft_ieee_id=8334604&rfr_iscdi=true |