Loading…
THE KÄHLER-RICCI FLOW, RICCI-FLAT METRICS AND COLLAPSING LIMITS
We investigate the Kähler-Ricci flow on holomorphic fiber spaces whose generic fiber is a Calabi-Yau manifold. We establish uniform metric convergence to a metric on the base, away from the singular fibers, and show that the rescaled metrics on the fibers converge to Ricci-flat Kähler metrics. This...
Saved in:
Published in: | American journal of mathematics 2018-06, Vol.140 (3), p.653-698 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c398t-8a208888f1d13a4c591d5bb02801ce4b5d040b16be89a0d07500cee939badf73 |
---|---|
cites | |
container_end_page | 698 |
container_issue | 3 |
container_start_page | 653 |
container_title | American journal of mathematics |
container_volume | 140 |
creator | Tosatti, Valentino Weinkove, Ben Yang, Xiaokui |
description | We investigate the Kähler-Ricci flow on holomorphic fiber spaces whose generic fiber is a Calabi-Yau manifold. We establish uniform metric convergence to a metric on the base, away from the singular fibers, and show that the rescaled metrics on the fibers converge to Ricci-flat Kähler metrics. This strengthens previous work of Song-Tian and others. We obtain analogous results for degenerations of Ricci-flat Kähler metrics. |
doi_str_mv | 10.1353/ajm.2018.0016 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2159260929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26979367</jstor_id><sourcerecordid>26979367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-8a208888f1d13a4c591d5bb02801ce4b5d040b16be89a0d07500cee939badf73</originalsourceid><addsrcrecordid>eNpFkE9Lw0AQxRdRsFaPHoWAV7fO7ibZ3Zslpm1w20oT8LjkzwYM1tRsevDuN_OLubFS5zLz4M178EPomsCEsIDd5812QoGICQAJT9CIgAAcMs5P0QgAKJaM8nN0YW3jJHCgI_SQLWLv6ftroeIN3iRRlHgztX65835vPFPTzFvGmVOpN109etFaqelzmqzmnkqWSZZeorM6f7Pm6m-PUTaLs2iB1XqeRFOFSyZFj0VOQbipSUVY7peBJFVQFEAFkNL4RVCBDwUJCyNkDhXwAKA0RjJZ5FXN2RjdHmJ3XfuxN7bXTbvv3l2jpiSQNARJpXPhg6vsWms7U-td97rNu09NQA-MtGOkB0Z6YOT8_jG1MWW_3VvzHxw6Xr6v04HjgJEINmAcam4Ob43t2-7YQUPJJQs5-wErX2y0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159260929</pqid></control><display><type>article</type><title>THE KÄHLER-RICCI FLOW, RICCI-FLAT METRICS AND COLLAPSING LIMITS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Muse:Jisc Collections:Project MUSE Journals Agreement 2024:Premium Collection</source><creator>Tosatti, Valentino ; Weinkove, Ben ; Yang, Xiaokui</creator><creatorcontrib>Tosatti, Valentino ; Weinkove, Ben ; Yang, Xiaokui</creatorcontrib><description>We investigate the Kähler-Ricci flow on holomorphic fiber spaces whose generic fiber is a Calabi-Yau manifold. We establish uniform metric convergence to a metric on the base, away from the singular fibers, and show that the rescaled metrics on the fibers converge to Ricci-flat Kähler metrics. This strengthens previous work of Song-Tian and others. We obtain analogous results for degenerations of Ricci-flat Kähler metrics.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2018.0016</identifier><language>eng</language><publisher>Baltimore: Johns Hopkins University Press</publisher><subject>Convergence</subject><ispartof>American journal of mathematics, 2018-06, Vol.140 (3), p.653-698</ispartof><rights>2018 by Johns Hopkins University Press</rights><rights>Copyright © The Johns Hopkins University Press.</rights><rights>Copyright Johns Hopkins University Press Jun 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-8a208888f1d13a4c591d5bb02801ce4b5d040b16be89a0d07500cee939badf73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26979367$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26979367$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>Tosatti, Valentino</creatorcontrib><creatorcontrib>Weinkove, Ben</creatorcontrib><creatorcontrib>Yang, Xiaokui</creatorcontrib><title>THE KÄHLER-RICCI FLOW, RICCI-FLAT METRICS AND COLLAPSING LIMITS</title><title>American journal of mathematics</title><description>We investigate the Kähler-Ricci flow on holomorphic fiber spaces whose generic fiber is a Calabi-Yau manifold. We establish uniform metric convergence to a metric on the base, away from the singular fibers, and show that the rescaled metrics on the fibers converge to Ricci-flat Kähler metrics. This strengthens previous work of Song-Tian and others. We obtain analogous results for degenerations of Ricci-flat Kähler metrics.</description><subject>Convergence</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkE9Lw0AQxRdRsFaPHoWAV7fO7ibZ3Zslpm1w20oT8LjkzwYM1tRsevDuN_OLubFS5zLz4M178EPomsCEsIDd5812QoGICQAJT9CIgAAcMs5P0QgAKJaM8nN0YW3jJHCgI_SQLWLv6ftroeIN3iRRlHgztX65835vPFPTzFvGmVOpN109etFaqelzmqzmnkqWSZZeorM6f7Pm6m-PUTaLs2iB1XqeRFOFSyZFj0VOQbipSUVY7peBJFVQFEAFkNL4RVCBDwUJCyNkDhXwAKA0RjJZ5FXN2RjdHmJ3XfuxN7bXTbvv3l2jpiSQNARJpXPhg6vsWms7U-td97rNu09NQA-MtGOkB0Z6YOT8_jG1MWW_3VvzHxw6Xr6v04HjgJEINmAcam4Ob43t2-7YQUPJJQs5-wErX2y0</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Tosatti, Valentino</creator><creator>Weinkove, Ben</creator><creator>Yang, Xiaokui</creator><general>Johns Hopkins University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180601</creationdate><title>THE KÄHLER-RICCI FLOW, RICCI-FLAT METRICS AND COLLAPSING LIMITS</title><author>Tosatti, Valentino ; Weinkove, Ben ; Yang, Xiaokui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-8a208888f1d13a4c591d5bb02801ce4b5d040b16be89a0d07500cee939badf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tosatti, Valentino</creatorcontrib><creatorcontrib>Weinkove, Ben</creatorcontrib><creatorcontrib>Yang, Xiaokui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tosatti, Valentino</au><au>Weinkove, Ben</au><au>Yang, Xiaokui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE KÄHLER-RICCI FLOW, RICCI-FLAT METRICS AND COLLAPSING LIMITS</atitle><jtitle>American journal of mathematics</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>140</volume><issue>3</issue><spage>653</spage><epage>698</epage><pages>653-698</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><abstract>We investigate the Kähler-Ricci flow on holomorphic fiber spaces whose generic fiber is a Calabi-Yau manifold. We establish uniform metric convergence to a metric on the base, away from the singular fibers, and show that the rescaled metrics on the fibers converge to Ricci-flat Kähler metrics. This strengthens previous work of Song-Tian and others. We obtain analogous results for degenerations of Ricci-flat Kähler metrics.</abstract><cop>Baltimore</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2018.0016</doi><tpages>46</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2018-06, Vol.140 (3), p.653-698 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_2159260929 |
source | JSTOR Archival Journals and Primary Sources Collection; Project Muse:Jisc Collections:Project MUSE Journals Agreement 2024:Premium Collection |
subjects | Convergence |
title | THE KÄHLER-RICCI FLOW, RICCI-FLAT METRICS AND COLLAPSING LIMITS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20K%C3%84HLER-RICCI%20FLOW,%20RICCI-FLAT%20METRICS%20AND%20COLLAPSING%20LIMITS&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Tosatti,%20Valentino&rft.date=2018-06-01&rft.volume=140&rft.issue=3&rft.spage=653&rft.epage=698&rft.pages=653-698&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.2018.0016&rft_dat=%3Cjstor_proqu%3E26979367%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-8a208888f1d13a4c591d5bb02801ce4b5d040b16be89a0d07500cee939badf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2159260929&rft_id=info:pmid/&rft_jstor_id=26979367&rfr_iscdi=true |