Loading…

Growth and Raman spectroscopy of thickness-controlled rotationally faulted multilayer graphene

We report the growth of thickness-controlled rotationally faulted multilayer graphene (rf-MLG) on Ni foils by low-pressure chemical vapor deposition and their characterization by micro-Raman spectroscopy. The surface morphology and thickness were investigated by scanning electron microscopy, X-ray d...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2019-01, Vol.141, p.76-82
Main Authors: Kato, H., Itagaki, N., Im, H.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-a1a0c6f1f185d879af3aa34d3d3314905fd3a67a8c729d04ed1810f9fd9eb5273
cites cdi_FETCH-LOGICAL-c334t-a1a0c6f1f185d879af3aa34d3d3314905fd3a67a8c729d04ed1810f9fd9eb5273
container_end_page 82
container_issue
container_start_page 76
container_title Carbon (New York)
container_volume 141
creator Kato, H.
Itagaki, N.
Im, H.J.
description We report the growth of thickness-controlled rotationally faulted multilayer graphene (rf-MLG) on Ni foils by low-pressure chemical vapor deposition and their characterization by micro-Raman spectroscopy. The surface morphology and thickness were investigated by scanning electron microscopy, X-ray diffraction, and transmittance measurements. These results have revealed that the thickness of rf-MLG can be effectively controlled by the thickness of the Ni foil rather than the flow rate of CH4, H2, Ar. In Raman spectroscopy measurements, we observed most Raman peaks of the graphitic materials. Raman spectra can be categorized into four patterns and show systematic behaviors. Especially, the in-plane (∼1880 cm−1, ∼2035 cm−1) and out-of-plane (∼1750 cm−1) modes are successfully analyzed to explain the dimensionality of rf-MLG as in the twisted (or rotated) bilayer graphene. In addition, it is found that the two peaks at ∼1230 cm−1 and ∼2220 cm−1 well reflect the properties of the in-plane mode. The peak intensities of the above four in-plane modes are proportional to that of 2D band, indicating that they share the common Raman resonance process. [Display omitted]
doi_str_mv 10.1016/j.carbon.2018.09.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159933134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000862231830825X</els_id><sourcerecordid>2159933134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a1a0c6f1f185d879af3aa34d3d3314905fd3a67a8c729d04ed1810f9fd9eb5273</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxcF161J00eyEWTQURAE0a3hTh5OaiepSUfpvzdDXbs63Mc53PshdElwQTBprrtCQth4V5SYsALzApP2CC0Ia2lOGSfHaIExZnlTlvQUncXYpbJipFqg93XwP-M2A6eyF9iBy-Kg5Rh8lH6YMm-ycWvlp9Mx5tK7NOh7rbLgRxitd9D3U2Zg34-puUtie5h0yD4CDFvt9Dk6MdBHffGnS_R2f_e6esifntePq9unXFJajTkQwLIxxBBWK9ZyMBSAVooqSknFcW0UhaYFJtuSK1xpRRjBhhvF9aYuW7pEV3PuEPzXXsdRdH4f0nlRlKTmPMXQKm1V85ZM_8WgjRiC3UGYBMHiQFJ0YiYpDiQF5iKRTLab2abTB99WBxGl1U5qZUNiJZS3_wf8Aq5fgGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159933134</pqid></control><display><type>article</type><title>Growth and Raman spectroscopy of thickness-controlled rotationally faulted multilayer graphene</title><source>Elsevier</source><creator>Kato, H. ; Itagaki, N. ; Im, H.J.</creator><creatorcontrib>Kato, H. ; Itagaki, N. ; Im, H.J.</creatorcontrib><description>We report the growth of thickness-controlled rotationally faulted multilayer graphene (rf-MLG) on Ni foils by low-pressure chemical vapor deposition and their characterization by micro-Raman spectroscopy. The surface morphology and thickness were investigated by scanning electron microscopy, X-ray diffraction, and transmittance measurements. These results have revealed that the thickness of rf-MLG can be effectively controlled by the thickness of the Ni foil rather than the flow rate of CH4, H2, Ar. In Raman spectroscopy measurements, we observed most Raman peaks of the graphitic materials. Raman spectra can be categorized into four patterns and show systematic behaviors. Especially, the in-plane (∼1880 cm−1, ∼2035 cm−1) and out-of-plane (∼1750 cm−1) modes are successfully analyzed to explain the dimensionality of rf-MLG as in the twisted (or rotated) bilayer graphene. In addition, it is found that the two peaks at ∼1230 cm−1 and ∼2220 cm−1 well reflect the properties of the in-plane mode. The peak intensities of the above four in-plane modes are proportional to that of 2D band, indicating that they share the common Raman resonance process. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2018.09.017</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Bilayers ; Chemical vapor deposition ; Deformation ; Electric properties ; Flow velocity ; Graphene ; Metal foils ; Morphology ; Multilayers ; Optical properties ; Organic chemistry ; Raman spectra ; Raman spectroscopy ; Scanning electron microscopy ; Spectrum analysis ; Thickness ; X-ray diffraction</subject><ispartof>Carbon (New York), 2019-01, Vol.141, p.76-82</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a1a0c6f1f185d879af3aa34d3d3314905fd3a67a8c729d04ed1810f9fd9eb5273</citedby><cites>FETCH-LOGICAL-c334t-a1a0c6f1f185d879af3aa34d3d3314905fd3a67a8c729d04ed1810f9fd9eb5273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kato, H.</creatorcontrib><creatorcontrib>Itagaki, N.</creatorcontrib><creatorcontrib>Im, H.J.</creatorcontrib><title>Growth and Raman spectroscopy of thickness-controlled rotationally faulted multilayer graphene</title><title>Carbon (New York)</title><description>We report the growth of thickness-controlled rotationally faulted multilayer graphene (rf-MLG) on Ni foils by low-pressure chemical vapor deposition and their characterization by micro-Raman spectroscopy. The surface morphology and thickness were investigated by scanning electron microscopy, X-ray diffraction, and transmittance measurements. These results have revealed that the thickness of rf-MLG can be effectively controlled by the thickness of the Ni foil rather than the flow rate of CH4, H2, Ar. In Raman spectroscopy measurements, we observed most Raman peaks of the graphitic materials. Raman spectra can be categorized into four patterns and show systematic behaviors. Especially, the in-plane (∼1880 cm−1, ∼2035 cm−1) and out-of-plane (∼1750 cm−1) modes are successfully analyzed to explain the dimensionality of rf-MLG as in the twisted (or rotated) bilayer graphene. In addition, it is found that the two peaks at ∼1230 cm−1 and ∼2220 cm−1 well reflect the properties of the in-plane mode. The peak intensities of the above four in-plane modes are proportional to that of 2D band, indicating that they share the common Raman resonance process. [Display omitted]</description><subject>Bilayers</subject><subject>Chemical vapor deposition</subject><subject>Deformation</subject><subject>Electric properties</subject><subject>Flow velocity</subject><subject>Graphene</subject><subject>Metal foils</subject><subject>Morphology</subject><subject>Multilayers</subject><subject>Optical properties</subject><subject>Organic chemistry</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Thickness</subject><subject>X-ray diffraction</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxcF161J00eyEWTQURAE0a3hTh5OaiepSUfpvzdDXbs63Mc53PshdElwQTBprrtCQth4V5SYsALzApP2CC0Ia2lOGSfHaIExZnlTlvQUncXYpbJipFqg93XwP-M2A6eyF9iBy-Kg5Rh8lH6YMm-ycWvlp9Mx5tK7NOh7rbLgRxitd9D3U2Zg34-puUtie5h0yD4CDFvt9Dk6MdBHffGnS_R2f_e6esifntePq9unXFJajTkQwLIxxBBWK9ZyMBSAVooqSknFcW0UhaYFJtuSK1xpRRjBhhvF9aYuW7pEV3PuEPzXXsdRdH4f0nlRlKTmPMXQKm1V85ZM_8WgjRiC3UGYBMHiQFJ0YiYpDiQF5iKRTLab2abTB99WBxGl1U5qZUNiJZS3_wf8Aq5fgGI</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Kato, H.</creator><creator>Itagaki, N.</creator><creator>Im, H.J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201901</creationdate><title>Growth and Raman spectroscopy of thickness-controlled rotationally faulted multilayer graphene</title><author>Kato, H. ; Itagaki, N. ; Im, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a1a0c6f1f185d879af3aa34d3d3314905fd3a67a8c729d04ed1810f9fd9eb5273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bilayers</topic><topic>Chemical vapor deposition</topic><topic>Deformation</topic><topic>Electric properties</topic><topic>Flow velocity</topic><topic>Graphene</topic><topic>Metal foils</topic><topic>Morphology</topic><topic>Multilayers</topic><topic>Optical properties</topic><topic>Organic chemistry</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Thickness</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, H.</creatorcontrib><creatorcontrib>Itagaki, N.</creatorcontrib><creatorcontrib>Im, H.J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, H.</au><au>Itagaki, N.</au><au>Im, H.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth and Raman spectroscopy of thickness-controlled rotationally faulted multilayer graphene</atitle><jtitle>Carbon (New York)</jtitle><date>2019-01</date><risdate>2019</risdate><volume>141</volume><spage>76</spage><epage>82</epage><pages>76-82</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>We report the growth of thickness-controlled rotationally faulted multilayer graphene (rf-MLG) on Ni foils by low-pressure chemical vapor deposition and their characterization by micro-Raman spectroscopy. The surface morphology and thickness were investigated by scanning electron microscopy, X-ray diffraction, and transmittance measurements. These results have revealed that the thickness of rf-MLG can be effectively controlled by the thickness of the Ni foil rather than the flow rate of CH4, H2, Ar. In Raman spectroscopy measurements, we observed most Raman peaks of the graphitic materials. Raman spectra can be categorized into four patterns and show systematic behaviors. Especially, the in-plane (∼1880 cm−1, ∼2035 cm−1) and out-of-plane (∼1750 cm−1) modes are successfully analyzed to explain the dimensionality of rf-MLG as in the twisted (or rotated) bilayer graphene. In addition, it is found that the two peaks at ∼1230 cm−1 and ∼2220 cm−1 well reflect the properties of the in-plane mode. The peak intensities of the above four in-plane modes are proportional to that of 2D band, indicating that they share the common Raman resonance process. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2018.09.017</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2019-01, Vol.141, p.76-82
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2159933134
source Elsevier
subjects Bilayers
Chemical vapor deposition
Deformation
Electric properties
Flow velocity
Graphene
Metal foils
Morphology
Multilayers
Optical properties
Organic chemistry
Raman spectra
Raman spectroscopy
Scanning electron microscopy
Spectrum analysis
Thickness
X-ray diffraction
title Growth and Raman spectroscopy of thickness-controlled rotationally faulted multilayer graphene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20and%20Raman%20spectroscopy%20of%20thickness-controlled%20rotationally%20faulted%20multilayer%20graphene&rft.jtitle=Carbon%20(New%20York)&rft.au=Kato,%20H.&rft.date=2019-01&rft.volume=141&rft.spage=76&rft.epage=82&rft.pages=76-82&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2018.09.017&rft_dat=%3Cproquest_cross%3E2159933134%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-a1a0c6f1f185d879af3aa34d3d3314905fd3a67a8c729d04ed1810f9fd9eb5273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2159933134&rft_id=info:pmid/&rfr_iscdi=true