Loading…
An efficient classification of malware behavior using deep neural network
Malware detection have long become a challenge in research. The existing methods rely on malware signature which are proved not to be effective nowadays. The recent researches focus on using probabilistic model such as machine learning to detect the existence of malware. They, however, do not achiev...
Saved in:
Published in: | Journal of intelligent & fuzzy systems 2018-01, Vol.35 (6), p.5801-5814 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c261t-f6f7e46a580c09025deb99a51fe44e93ebde55f2a98011de5bc9ebdaafff3e0d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c261t-f6f7e46a580c09025deb99a51fe44e93ebde55f2a98011de5bc9ebdaafff3e0d3 |
container_end_page | 5814 |
container_issue | 6 |
container_start_page | 5801 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 35 |
creator | Hai, Quan Tran Hwang, Seong Oun |
description | Malware detection have long become a challenge in research. The existing methods rely on malware signature which are proved not to be effective nowadays. The recent researches focus on using probabilistic model such as machine learning to detect the existence of malware. They, however, do not achieve such a good performance. Particularly, machine learning techniques still have an issue of high feature engineering overhead. In this paper, we propose a deep learning method to detect malware based on their malicious behavior. Through experimentation, we show that our method can achieve a very high accuracy rate of 98.75 in F1 measure, compared to state of the art methods. |
doi_str_mv | 10.3233/JIFS-169823 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159996430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159996430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-f6f7e46a580c09025deb99a51fe44e93ebde55f2a98011de5bc9ebdaafff3e0d3</originalsourceid><addsrcrecordid>eNotkE9LxDAUxIMouK6e_AIBj1LNnyZtjsviamXBg3oOafuiWbtNTVoXv71Z6mlmHsMb-CF0TckdZ5zfP1eb14xKVTJ-gha0LERWKlmcJk9knlGWy3N0EeOOEFoIRhaoWvUYrHWNg37ETWdidCmZ0fkee4v3pjuYALiGT_PjfMBTdP0HbgEG3MMUTJdkPPjwdYnOrOkiXP3rEr1vHt7WT9n25bFar7ZZwyQdMyttAbk0oiQNUYSJFmqljKAW8hwUh7oFISwzqiSUJl83Kt2MsdZyIC1fopv57xD89wRx1Ds_hT5NakaFUkrmnKTW7dxqgo8xgNVDcHsTfjUl-shKH1npmRX_A2ebXXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159996430</pqid></control><display><type>article</type><title>An efficient classification of malware behavior using deep neural network</title><source>EBSCOhost Business Source Ultimate</source><creator>Hai, Quan Tran ; Hwang, Seong Oun</creator><contributor>Hwang, Seong Oun</contributor><creatorcontrib>Hai, Quan Tran ; Hwang, Seong Oun ; Hwang, Seong Oun</creatorcontrib><description>Malware detection have long become a challenge in research. The existing methods rely on malware signature which are proved not to be effective nowadays. The recent researches focus on using probabilistic model such as machine learning to detect the existence of malware. They, however, do not achieve such a good performance. Particularly, machine learning techniques still have an issue of high feature engineering overhead. In this paper, we propose a deep learning method to detect malware based on their malicious behavior. Through experimentation, we show that our method can achieve a very high accuracy rate of 98.75 in F1 measure, compared to state of the art methods.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-169823</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Artificial intelligence ; Artificial neural networks ; Experimentation ; Machine learning ; Malware ; Neural networks ; Probabilistic models ; State of the art</subject><ispartof>Journal of intelligent & fuzzy systems, 2018-01, Vol.35 (6), p.5801-5814</ispartof><rights>Copyright IOS Press BV 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-f6f7e46a580c09025deb99a51fe44e93ebde55f2a98011de5bc9ebdaafff3e0d3</citedby><cites>FETCH-LOGICAL-c261t-f6f7e46a580c09025deb99a51fe44e93ebde55f2a98011de5bc9ebdaafff3e0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Hwang, Seong Oun</contributor><creatorcontrib>Hai, Quan Tran</creatorcontrib><creatorcontrib>Hwang, Seong Oun</creatorcontrib><title>An efficient classification of malware behavior using deep neural network</title><title>Journal of intelligent & fuzzy systems</title><description>Malware detection have long become a challenge in research. The existing methods rely on malware signature which are proved not to be effective nowadays. The recent researches focus on using probabilistic model such as machine learning to detect the existence of malware. They, however, do not achieve such a good performance. Particularly, machine learning techniques still have an issue of high feature engineering overhead. In this paper, we propose a deep learning method to detect malware based on their malicious behavior. Through experimentation, we show that our method can achieve a very high accuracy rate of 98.75 in F1 measure, compared to state of the art methods.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Experimentation</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Neural networks</subject><subject>Probabilistic models</subject><subject>State of the art</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkE9LxDAUxIMouK6e_AIBj1LNnyZtjsviamXBg3oOafuiWbtNTVoXv71Z6mlmHsMb-CF0TckdZ5zfP1eb14xKVTJ-gha0LERWKlmcJk9knlGWy3N0EeOOEFoIRhaoWvUYrHWNg37ETWdidCmZ0fkee4v3pjuYALiGT_PjfMBTdP0HbgEG3MMUTJdkPPjwdYnOrOkiXP3rEr1vHt7WT9n25bFar7ZZwyQdMyttAbk0oiQNUYSJFmqljKAW8hwUh7oFISwzqiSUJl83Kt2MsdZyIC1fopv57xD89wRx1Ds_hT5NakaFUkrmnKTW7dxqgo8xgNVDcHsTfjUl-shKH1npmRX_A2ebXXY</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Hai, Quan Tran</creator><creator>Hwang, Seong Oun</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180101</creationdate><title>An efficient classification of malware behavior using deep neural network</title><author>Hai, Quan Tran ; Hwang, Seong Oun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-f6f7e46a580c09025deb99a51fe44e93ebde55f2a98011de5bc9ebdaafff3e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Experimentation</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Neural networks</topic><topic>Probabilistic models</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hai, Quan Tran</creatorcontrib><creatorcontrib>Hwang, Seong Oun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hai, Quan Tran</au><au>Hwang, Seong Oun</au><au>Hwang, Seong Oun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient classification of malware behavior using deep neural network</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>35</volume><issue>6</issue><spage>5801</spage><epage>5814</epage><pages>5801-5814</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Malware detection have long become a challenge in research. The existing methods rely on malware signature which are proved not to be effective nowadays. The recent researches focus on using probabilistic model such as machine learning to detect the existence of malware. They, however, do not achieve such a good performance. Particularly, machine learning techniques still have an issue of high feature engineering overhead. In this paper, we propose a deep learning method to detect malware based on their malicious behavior. Through experimentation, we show that our method can achieve a very high accuracy rate of 98.75 in F1 measure, compared to state of the art methods.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-169823</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2018-01, Vol.35 (6), p.5801-5814 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2159996430 |
source | EBSCOhost Business Source Ultimate |
subjects | Artificial intelligence Artificial neural networks Experimentation Machine learning Malware Neural networks Probabilistic models State of the art |
title | An efficient classification of malware behavior using deep neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20classification%20of%20malware%20behavior%20using%20deep%20neural%20network&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Hai,%20Quan%20Tran&rft.date=2018-01-01&rft.volume=35&rft.issue=6&rft.spage=5801&rft.epage=5814&rft.pages=5801-5814&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-169823&rft_dat=%3Cproquest_cross%3E2159996430%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-f6f7e46a580c09025deb99a51fe44e93ebde55f2a98011de5bc9ebdaafff3e0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2159996430&rft_id=info:pmid/&rfr_iscdi=true |