Loading…

An efficient classification of malware behavior using deep neural network

Malware detection have long become a challenge in research. The existing methods rely on malware signature which are proved not to be effective nowadays. The recent researches focus on using probabilistic model such as machine learning to detect the existence of malware. They, however, do not achiev...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & fuzzy systems 2018-01, Vol.35 (6), p.5801-5814
Main Authors: Hai, Quan Tran, Hwang, Seong Oun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c261t-f6f7e46a580c09025deb99a51fe44e93ebde55f2a98011de5bc9ebdaafff3e0d3
cites cdi_FETCH-LOGICAL-c261t-f6f7e46a580c09025deb99a51fe44e93ebde55f2a98011de5bc9ebdaafff3e0d3
container_end_page 5814
container_issue 6
container_start_page 5801
container_title Journal of intelligent & fuzzy systems
container_volume 35
creator Hai, Quan Tran
Hwang, Seong Oun
description Malware detection have long become a challenge in research. The existing methods rely on malware signature which are proved not to be effective nowadays. The recent researches focus on using probabilistic model such as machine learning to detect the existence of malware. They, however, do not achieve such a good performance. Particularly, machine learning techniques still have an issue of high feature engineering overhead. In this paper, we propose a deep learning method to detect malware based on their malicious behavior. Through experimentation, we show that our method can achieve a very high accuracy rate of 98.75 in F1 measure, compared to state of the art methods.
doi_str_mv 10.3233/JIFS-169823
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159996430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159996430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-f6f7e46a580c09025deb99a51fe44e93ebde55f2a98011de5bc9ebdaafff3e0d3</originalsourceid><addsrcrecordid>eNotkE9LxDAUxIMouK6e_AIBj1LNnyZtjsviamXBg3oOafuiWbtNTVoXv71Z6mlmHsMb-CF0TckdZ5zfP1eb14xKVTJ-gha0LERWKlmcJk9knlGWy3N0EeOOEFoIRhaoWvUYrHWNg37ETWdidCmZ0fkee4v3pjuYALiGT_PjfMBTdP0HbgEG3MMUTJdkPPjwdYnOrOkiXP3rEr1vHt7WT9n25bFar7ZZwyQdMyttAbk0oiQNUYSJFmqljKAW8hwUh7oFISwzqiSUJl83Kt2MsdZyIC1fopv57xD89wRx1Ds_hT5NakaFUkrmnKTW7dxqgo8xgNVDcHsTfjUl-shKH1npmRX_A2ebXXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159996430</pqid></control><display><type>article</type><title>An efficient classification of malware behavior using deep neural network</title><source>EBSCOhost Business Source Ultimate</source><creator>Hai, Quan Tran ; Hwang, Seong Oun</creator><contributor>Hwang, Seong Oun</contributor><creatorcontrib>Hai, Quan Tran ; Hwang, Seong Oun ; Hwang, Seong Oun</creatorcontrib><description>Malware detection have long become a challenge in research. The existing methods rely on malware signature which are proved not to be effective nowadays. The recent researches focus on using probabilistic model such as machine learning to detect the existence of malware. They, however, do not achieve such a good performance. Particularly, machine learning techniques still have an issue of high feature engineering overhead. In this paper, we propose a deep learning method to detect malware based on their malicious behavior. Through experimentation, we show that our method can achieve a very high accuracy rate of 98.75 in F1 measure, compared to state of the art methods.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-169823</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Artificial intelligence ; Artificial neural networks ; Experimentation ; Machine learning ; Malware ; Neural networks ; Probabilistic models ; State of the art</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2018-01, Vol.35 (6), p.5801-5814</ispartof><rights>Copyright IOS Press BV 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-f6f7e46a580c09025deb99a51fe44e93ebde55f2a98011de5bc9ebdaafff3e0d3</citedby><cites>FETCH-LOGICAL-c261t-f6f7e46a580c09025deb99a51fe44e93ebde55f2a98011de5bc9ebdaafff3e0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Hwang, Seong Oun</contributor><creatorcontrib>Hai, Quan Tran</creatorcontrib><creatorcontrib>Hwang, Seong Oun</creatorcontrib><title>An efficient classification of malware behavior using deep neural network</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Malware detection have long become a challenge in research. The existing methods rely on malware signature which are proved not to be effective nowadays. The recent researches focus on using probabilistic model such as machine learning to detect the existence of malware. They, however, do not achieve such a good performance. Particularly, machine learning techniques still have an issue of high feature engineering overhead. In this paper, we propose a deep learning method to detect malware based on their malicious behavior. Through experimentation, we show that our method can achieve a very high accuracy rate of 98.75 in F1 measure, compared to state of the art methods.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Experimentation</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Neural networks</subject><subject>Probabilistic models</subject><subject>State of the art</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkE9LxDAUxIMouK6e_AIBj1LNnyZtjsviamXBg3oOafuiWbtNTVoXv71Z6mlmHsMb-CF0TckdZ5zfP1eb14xKVTJ-gha0LERWKlmcJk9knlGWy3N0EeOOEFoIRhaoWvUYrHWNg37ETWdidCmZ0fkee4v3pjuYALiGT_PjfMBTdP0HbgEG3MMUTJdkPPjwdYnOrOkiXP3rEr1vHt7WT9n25bFar7ZZwyQdMyttAbk0oiQNUYSJFmqljKAW8hwUh7oFISwzqiSUJl83Kt2MsdZyIC1fopv57xD89wRx1Ds_hT5NakaFUkrmnKTW7dxqgo8xgNVDcHsTfjUl-shKH1npmRX_A2ebXXY</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Hai, Quan Tran</creator><creator>Hwang, Seong Oun</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180101</creationdate><title>An efficient classification of malware behavior using deep neural network</title><author>Hai, Quan Tran ; Hwang, Seong Oun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-f6f7e46a580c09025deb99a51fe44e93ebde55f2a98011de5bc9ebdaafff3e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Experimentation</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Neural networks</topic><topic>Probabilistic models</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hai, Quan Tran</creatorcontrib><creatorcontrib>Hwang, Seong Oun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hai, Quan Tran</au><au>Hwang, Seong Oun</au><au>Hwang, Seong Oun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient classification of malware behavior using deep neural network</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>35</volume><issue>6</issue><spage>5801</spage><epage>5814</epage><pages>5801-5814</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Malware detection have long become a challenge in research. The existing methods rely on malware signature which are proved not to be effective nowadays. The recent researches focus on using probabilistic model such as machine learning to detect the existence of malware. They, however, do not achieve such a good performance. Particularly, machine learning techniques still have an issue of high feature engineering overhead. In this paper, we propose a deep learning method to detect malware based on their malicious behavior. Through experimentation, we show that our method can achieve a very high accuracy rate of 98.75 in F1 measure, compared to state of the art methods.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-169823</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2018-01, Vol.35 (6), p.5801-5814
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2159996430
source EBSCOhost Business Source Ultimate
subjects Artificial intelligence
Artificial neural networks
Experimentation
Machine learning
Malware
Neural networks
Probabilistic models
State of the art
title An efficient classification of malware behavior using deep neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20classification%20of%20malware%20behavior%20using%20deep%20neural%20network&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Hai,%20Quan%20Tran&rft.date=2018-01-01&rft.volume=35&rft.issue=6&rft.spage=5801&rft.epage=5814&rft.pages=5801-5814&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-169823&rft_dat=%3Cproquest_cross%3E2159996430%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-f6f7e46a580c09025deb99a51fe44e93ebde55f2a98011de5bc9ebdaafff3e0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2159996430&rft_id=info:pmid/&rfr_iscdi=true