Loading…

Excision of Carbohydrate-Modified dNMP Analogues from DNA 3' end by Human Apurinic/Apyrimidinic Endonuclease 1 (APE1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1)

We have studied the excision efficiency of human apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) on matched or mismatched bases located at the 3' end of DNA primers. We have used model DNA duplexes, which mimic DNA structures that occur during either repli...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology (New York) 2018-11, Vol.52 (6), p.922-928
Main Authors: Dyrkheeva, N. S., Lebedeva, N. A., Sherstyuk, Yu. V., Abramova, T. V., Silnikov, V. N., Lavrik, O. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-3f0eb1887ab38bfb85c9e784d9e893158bcf68f1b6ce5d3871182f103ba6da583
cites cdi_FETCH-LOGICAL-c316t-3f0eb1887ab38bfb85c9e784d9e893158bcf68f1b6ce5d3871182f103ba6da583
container_end_page 928
container_issue 6
container_start_page 922
container_title Molecular biology (New York)
container_volume 52
creator Dyrkheeva, N. S.
Lebedeva, N. A.
Sherstyuk, Yu. V.
Abramova, T. V.
Silnikov, V. N.
Lavrik, O. I.
description We have studied the excision efficiency of human apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) on matched or mismatched bases located at the 3' end of DNA primers. We have used model DNA duplexes, which mimic DNA structures that occur during either replication (DNA with a 3' recessed end) or repair (DNA with a single-strand break). Both APE1 and TDP1 are more efficient in removing ribose-modified dNMP residues from mismatched pairs rather than canonical pairs. Thus, both of these enzymes may act as proofreading factors during the repair synthesis catalyzed by DNA polymerases including DNA polymerase β (Polβ). The design of new DNA polymerase inhibitors, which act as DNA or RNA chain terminators, is one of the main strategies in the development of antiviral agents. The excision efficacy of APE1 and TDP1 has also been studied for 3'-modified DNA duplexes that contain ddNMP or phosphorylated morpholino nucleosides (MorB) commonly used as terminators in the DNA synthesis. We have also investigated the insertion of ddNTP and morpholino nucleotides catalyzed by Polβ and human immunodeficiency virus reverse transcriptase. This experiment has pointed to MorCyt, cytosine-containing morpholino nucleoside, as a potential antiviral agent.
doi_str_mv 10.1134/S0026893318060067
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2160110505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2160110505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3f0eb1887ab38bfb85c9e784d9e893158bcf68f1b6ce5d3871182f103ba6da583</originalsourceid><addsrcrecordid>eNp1UVFLwzAQDqLgnP4A3wI-6B6quWZts8eyTSdsc-B8LkmTbB1dU5MV7L_xp5qygQ8iHBzHfd93990hdAvkEYAOn94JCWM2ohQYiQmJkzPUg5iwgIbD6Bz1unbQ9S_RlXM7QsBH2EPf06-8cIWpsNF4zK0w21ZaflDBwshCF0piuVyscFrx0mwa5bC2Zo8nyxTTe6wqiUWLZ82eVzitG1tURf6U1q0t9oXsCjytpKmavFTcKQz4IV1NYYC5J65ba1xbBp3WamtcvfUTlTsoe4KuJysYXKMLzUunbk65jz6ep-vxLJi_vbyO03mQU4gPAdVECWAs4YIyoQWL8pFK2FCOlHcNERO5jpkGEecqkpQlACzUQKjgseQRo310d9Strfn0Pg_ZzjTWu3ZZ6A8JQCISeRQcUbnf3Vmls9pb5bbNgGTdI7I_j_Cc8MhxHlttlP1V_p_0AxQuiIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2160110505</pqid></control><display><type>article</type><title>Excision of Carbohydrate-Modified dNMP Analogues from DNA 3' end by Human Apurinic/Apyrimidinic Endonuclease 1 (APE1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1)</title><source>Springer Link</source><creator>Dyrkheeva, N. S. ; Lebedeva, N. A. ; Sherstyuk, Yu. V. ; Abramova, T. V. ; Silnikov, V. N. ; Lavrik, O. I.</creator><creatorcontrib>Dyrkheeva, N. S. ; Lebedeva, N. A. ; Sherstyuk, Yu. V. ; Abramova, T. V. ; Silnikov, V. N. ; Lavrik, O. I.</creatorcontrib><description>We have studied the excision efficiency of human apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) on matched or mismatched bases located at the 3' end of DNA primers. We have used model DNA duplexes, which mimic DNA structures that occur during either replication (DNA with a 3' recessed end) or repair (DNA with a single-strand break). Both APE1 and TDP1 are more efficient in removing ribose-modified dNMP residues from mismatched pairs rather than canonical pairs. Thus, both of these enzymes may act as proofreading factors during the repair synthesis catalyzed by DNA polymerases including DNA polymerase β (Polβ). The design of new DNA polymerase inhibitors, which act as DNA or RNA chain terminators, is one of the main strategies in the development of antiviral agents. The excision efficacy of APE1 and TDP1 has also been studied for 3'-modified DNA duplexes that contain ddNMP or phosphorylated morpholino nucleosides (MorB) commonly used as terminators in the DNA synthesis. We have also investigated the insertion of ddNTP and morpholino nucleotides catalyzed by Polβ and human immunodeficiency virus reverse transcriptase. This experiment has pointed to MorCyt, cytosine-containing morpholino nucleoside, as a potential antiviral agent.</description><identifier>ISSN: 0026-8933</identifier><identifier>EISSN: 1608-3245</identifier><identifier>DOI: 10.1134/S0026893318060067</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Antiviral agents ; Biochemistry ; Biomedical and Life Sciences ; Cytosine ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA damage ; DNA polymerase ; DNA repair ; DNA-directed DNA polymerase ; Endonuclease ; HIV ; Human Genetics ; Human immunodeficiency virus ; Insertion ; Life Sciences ; Nucleosides ; Nucleotides ; Phosphodiesterase ; Primers ; Proofreading ; Ribonucleic acid ; Ribose ; RNA ; RNA-directed DNA polymerase ; Structural-Functional Analysis of Biopolymers and Their Complexes</subject><ispartof>Molecular biology (New York), 2018-11, Vol.52 (6), p.922-928</ispartof><rights>Pleiades Publishing, Inc. 2018</rights><rights>Molecular Biology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3f0eb1887ab38bfb85c9e784d9e893158bcf68f1b6ce5d3871182f103ba6da583</citedby><cites>FETCH-LOGICAL-c316t-3f0eb1887ab38bfb85c9e784d9e893158bcf68f1b6ce5d3871182f103ba6da583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dyrkheeva, N. S.</creatorcontrib><creatorcontrib>Lebedeva, N. A.</creatorcontrib><creatorcontrib>Sherstyuk, Yu. V.</creatorcontrib><creatorcontrib>Abramova, T. V.</creatorcontrib><creatorcontrib>Silnikov, V. N.</creatorcontrib><creatorcontrib>Lavrik, O. I.</creatorcontrib><title>Excision of Carbohydrate-Modified dNMP Analogues from DNA 3' end by Human Apurinic/Apyrimidinic Endonuclease 1 (APE1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1)</title><title>Molecular biology (New York)</title><addtitle>Mol Biol</addtitle><description>We have studied the excision efficiency of human apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) on matched or mismatched bases located at the 3' end of DNA primers. We have used model DNA duplexes, which mimic DNA structures that occur during either replication (DNA with a 3' recessed end) or repair (DNA with a single-strand break). Both APE1 and TDP1 are more efficient in removing ribose-modified dNMP residues from mismatched pairs rather than canonical pairs. Thus, both of these enzymes may act as proofreading factors during the repair synthesis catalyzed by DNA polymerases including DNA polymerase β (Polβ). The design of new DNA polymerase inhibitors, which act as DNA or RNA chain terminators, is one of the main strategies in the development of antiviral agents. The excision efficacy of APE1 and TDP1 has also been studied for 3'-modified DNA duplexes that contain ddNMP or phosphorylated morpholino nucleosides (MorB) commonly used as terminators in the DNA synthesis. We have also investigated the insertion of ddNTP and morpholino nucleotides catalyzed by Polβ and human immunodeficiency virus reverse transcriptase. This experiment has pointed to MorCyt, cytosine-containing morpholino nucleoside, as a potential antiviral agent.</description><subject>Antiviral agents</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cytosine</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>DNA polymerase</subject><subject>DNA repair</subject><subject>DNA-directed DNA polymerase</subject><subject>Endonuclease</subject><subject>HIV</subject><subject>Human Genetics</subject><subject>Human immunodeficiency virus</subject><subject>Insertion</subject><subject>Life Sciences</subject><subject>Nucleosides</subject><subject>Nucleotides</subject><subject>Phosphodiesterase</subject><subject>Primers</subject><subject>Proofreading</subject><subject>Ribonucleic acid</subject><subject>Ribose</subject><subject>RNA</subject><subject>RNA-directed DNA polymerase</subject><subject>Structural-Functional Analysis of Biopolymers and Their Complexes</subject><issn>0026-8933</issn><issn>1608-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UVFLwzAQDqLgnP4A3wI-6B6quWZts8eyTSdsc-B8LkmTbB1dU5MV7L_xp5qygQ8iHBzHfd93990hdAvkEYAOn94JCWM2ohQYiQmJkzPUg5iwgIbD6Bz1unbQ9S_RlXM7QsBH2EPf06-8cIWpsNF4zK0w21ZaflDBwshCF0piuVyscFrx0mwa5bC2Zo8nyxTTe6wqiUWLZ82eVzitG1tURf6U1q0t9oXsCjytpKmavFTcKQz4IV1NYYC5J65ba1xbBp3WamtcvfUTlTsoe4KuJysYXKMLzUunbk65jz6ep-vxLJi_vbyO03mQU4gPAdVECWAs4YIyoQWL8pFK2FCOlHcNERO5jpkGEecqkpQlACzUQKjgseQRo310d9Strfn0Pg_ZzjTWu3ZZ6A8JQCISeRQcUbnf3Vmls9pb5bbNgGTdI7I_j_Cc8MhxHlttlP1V_p_0AxQuiIo</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Dyrkheeva, N. S.</creator><creator>Lebedeva, N. A.</creator><creator>Sherstyuk, Yu. V.</creator><creator>Abramova, T. V.</creator><creator>Silnikov, V. N.</creator><creator>Lavrik, O. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20181101</creationdate><title>Excision of Carbohydrate-Modified dNMP Analogues from DNA 3' end by Human Apurinic/Apyrimidinic Endonuclease 1 (APE1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1)</title><author>Dyrkheeva, N. S. ; Lebedeva, N. A. ; Sherstyuk, Yu. V. ; Abramova, T. V. ; Silnikov, V. N. ; Lavrik, O. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3f0eb1887ab38bfb85c9e784d9e893158bcf68f1b6ce5d3871182f103ba6da583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antiviral agents</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cytosine</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>DNA polymerase</topic><topic>DNA repair</topic><topic>DNA-directed DNA polymerase</topic><topic>Endonuclease</topic><topic>HIV</topic><topic>Human Genetics</topic><topic>Human immunodeficiency virus</topic><topic>Insertion</topic><topic>Life Sciences</topic><topic>Nucleosides</topic><topic>Nucleotides</topic><topic>Phosphodiesterase</topic><topic>Primers</topic><topic>Proofreading</topic><topic>Ribonucleic acid</topic><topic>Ribose</topic><topic>RNA</topic><topic>RNA-directed DNA polymerase</topic><topic>Structural-Functional Analysis of Biopolymers and Their Complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dyrkheeva, N. S.</creatorcontrib><creatorcontrib>Lebedeva, N. A.</creatorcontrib><creatorcontrib>Sherstyuk, Yu. V.</creatorcontrib><creatorcontrib>Abramova, T. V.</creatorcontrib><creatorcontrib>Silnikov, V. N.</creatorcontrib><creatorcontrib>Lavrik, O. I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Molecular biology (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dyrkheeva, N. S.</au><au>Lebedeva, N. A.</au><au>Sherstyuk, Yu. V.</au><au>Abramova, T. V.</au><au>Silnikov, V. N.</au><au>Lavrik, O. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excision of Carbohydrate-Modified dNMP Analogues from DNA 3' end by Human Apurinic/Apyrimidinic Endonuclease 1 (APE1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1)</atitle><jtitle>Molecular biology (New York)</jtitle><stitle>Mol Biol</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>52</volume><issue>6</issue><spage>922</spage><epage>928</epage><pages>922-928</pages><issn>0026-8933</issn><eissn>1608-3245</eissn><abstract>We have studied the excision efficiency of human apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) on matched or mismatched bases located at the 3' end of DNA primers. We have used model DNA duplexes, which mimic DNA structures that occur during either replication (DNA with a 3' recessed end) or repair (DNA with a single-strand break). Both APE1 and TDP1 are more efficient in removing ribose-modified dNMP residues from mismatched pairs rather than canonical pairs. Thus, both of these enzymes may act as proofreading factors during the repair synthesis catalyzed by DNA polymerases including DNA polymerase β (Polβ). The design of new DNA polymerase inhibitors, which act as DNA or RNA chain terminators, is one of the main strategies in the development of antiviral agents. The excision efficacy of APE1 and TDP1 has also been studied for 3'-modified DNA duplexes that contain ddNMP or phosphorylated morpholino nucleosides (MorB) commonly used as terminators in the DNA synthesis. We have also investigated the insertion of ddNTP and morpholino nucleotides catalyzed by Polβ and human immunodeficiency virus reverse transcriptase. This experiment has pointed to MorCyt, cytosine-containing morpholino nucleoside, as a potential antiviral agent.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0026893318060067</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-8933
ispartof Molecular biology (New York), 2018-11, Vol.52 (6), p.922-928
issn 0026-8933
1608-3245
language eng
recordid cdi_proquest_journals_2160110505
source Springer Link
subjects Antiviral agents
Biochemistry
Biomedical and Life Sciences
Cytosine
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA damage
DNA polymerase
DNA repair
DNA-directed DNA polymerase
Endonuclease
HIV
Human Genetics
Human immunodeficiency virus
Insertion
Life Sciences
Nucleosides
Nucleotides
Phosphodiesterase
Primers
Proofreading
Ribonucleic acid
Ribose
RNA
RNA-directed DNA polymerase
Structural-Functional Analysis of Biopolymers and Their Complexes
title Excision of Carbohydrate-Modified dNMP Analogues from DNA 3' end by Human Apurinic/Apyrimidinic Endonuclease 1 (APE1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excision%20of%20Carbohydrate-Modified%20dNMP%20Analogues%20from%20DNA%203'%20end%20by%20Human%20Apurinic/Apyrimidinic%20Endonuclease%201%20(APE1)%20and%20Tyrosyl-DNA%20Phosphodiesterase%201%20(TDP1)&rft.jtitle=Molecular%20biology%20(New%20York)&rft.au=Dyrkheeva,%20N.%20S.&rft.date=2018-11-01&rft.volume=52&rft.issue=6&rft.spage=922&rft.epage=928&rft.pages=922-928&rft.issn=0026-8933&rft.eissn=1608-3245&rft_id=info:doi/10.1134/S0026893318060067&rft_dat=%3Cproquest_cross%3E2160110505%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-3f0eb1887ab38bfb85c9e784d9e893158bcf68f1b6ce5d3871182f103ba6da583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2160110505&rft_id=info:pmid/&rfr_iscdi=true