Loading…
Excision of Carbohydrate-Modified dNMP Analogues from DNA 3' end by Human Apurinic/Apyrimidinic Endonuclease 1 (APE1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1)
We have studied the excision efficiency of human apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) on matched or mismatched bases located at the 3' end of DNA primers. We have used model DNA duplexes, which mimic DNA structures that occur during either repli...
Saved in:
Published in: | Molecular biology (New York) 2018-11, Vol.52 (6), p.922-928 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-3f0eb1887ab38bfb85c9e784d9e893158bcf68f1b6ce5d3871182f103ba6da583 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-3f0eb1887ab38bfb85c9e784d9e893158bcf68f1b6ce5d3871182f103ba6da583 |
container_end_page | 928 |
container_issue | 6 |
container_start_page | 922 |
container_title | Molecular biology (New York) |
container_volume | 52 |
creator | Dyrkheeva, N. S. Lebedeva, N. A. Sherstyuk, Yu. V. Abramova, T. V. Silnikov, V. N. Lavrik, O. I. |
description | We have studied the excision efficiency of human apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) on matched or mismatched bases located at the 3' end of DNA primers. We have used model DNA duplexes, which mimic DNA structures that occur during either replication (DNA with a 3' recessed end) or repair (DNA with a single-strand break). Both APE1 and TDP1 are more efficient in removing ribose-modified dNMP residues from mismatched pairs rather than canonical pairs. Thus, both of these enzymes may act as proofreading factors during the repair synthesis catalyzed by DNA polymerases including DNA polymerase β (Polβ). The design of new DNA polymerase inhibitors, which act as DNA or RNA chain terminators, is one of the main strategies in the development of antiviral agents. The excision efficacy of APE1 and TDP1 has also been studied for 3'-modified DNA duplexes that contain ddNMP or phosphorylated morpholino nucleosides (MorB) commonly used as terminators in the DNA synthesis. We have also investigated the insertion of ddNTP and morpholino nucleotides catalyzed by Polβ and human immunodeficiency virus reverse transcriptase. This experiment has pointed to MorCyt, cytosine-containing morpholino nucleoside, as a potential antiviral agent. |
doi_str_mv | 10.1134/S0026893318060067 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2160110505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2160110505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3f0eb1887ab38bfb85c9e784d9e893158bcf68f1b6ce5d3871182f103ba6da583</originalsourceid><addsrcrecordid>eNp1UVFLwzAQDqLgnP4A3wI-6B6quWZts8eyTSdsc-B8LkmTbB1dU5MV7L_xp5qygQ8iHBzHfd93990hdAvkEYAOn94JCWM2ohQYiQmJkzPUg5iwgIbD6Bz1unbQ9S_RlXM7QsBH2EPf06-8cIWpsNF4zK0w21ZaflDBwshCF0piuVyscFrx0mwa5bC2Zo8nyxTTe6wqiUWLZ82eVzitG1tURf6U1q0t9oXsCjytpKmavFTcKQz4IV1NYYC5J65ba1xbBp3WamtcvfUTlTsoe4KuJysYXKMLzUunbk65jz6ep-vxLJi_vbyO03mQU4gPAdVECWAs4YIyoQWL8pFK2FCOlHcNERO5jpkGEecqkpQlACzUQKjgseQRo310d9Strfn0Pg_ZzjTWu3ZZ6A8JQCISeRQcUbnf3Vmls9pb5bbNgGTdI7I_j_Cc8MhxHlttlP1V_p_0AxQuiIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2160110505</pqid></control><display><type>article</type><title>Excision of Carbohydrate-Modified dNMP Analogues from DNA 3' end by Human Apurinic/Apyrimidinic Endonuclease 1 (APE1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1)</title><source>Springer Link</source><creator>Dyrkheeva, N. S. ; Lebedeva, N. A. ; Sherstyuk, Yu. V. ; Abramova, T. V. ; Silnikov, V. N. ; Lavrik, O. I.</creator><creatorcontrib>Dyrkheeva, N. S. ; Lebedeva, N. A. ; Sherstyuk, Yu. V. ; Abramova, T. V. ; Silnikov, V. N. ; Lavrik, O. I.</creatorcontrib><description>We have studied the excision efficiency of human apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) on matched or mismatched bases located at the 3' end of DNA primers. We have used model DNA duplexes, which mimic DNA structures that occur during either replication (DNA with a 3' recessed end) or repair (DNA with a single-strand break). Both APE1 and TDP1 are more efficient in removing ribose-modified dNMP residues from mismatched pairs rather than canonical pairs. Thus, both of these enzymes may act as proofreading factors during the repair synthesis catalyzed by DNA polymerases including DNA polymerase β (Polβ). The design of new DNA polymerase inhibitors, which act as DNA or RNA chain terminators, is one of the main strategies in the development of antiviral agents. The excision efficacy of APE1 and TDP1 has also been studied for 3'-modified DNA duplexes that contain ddNMP or phosphorylated morpholino nucleosides (MorB) commonly used as terminators in the DNA synthesis. We have also investigated the insertion of ddNTP and morpholino nucleotides catalyzed by Polβ and human immunodeficiency virus reverse transcriptase. This experiment has pointed to MorCyt, cytosine-containing morpholino nucleoside, as a potential antiviral agent.</description><identifier>ISSN: 0026-8933</identifier><identifier>EISSN: 1608-3245</identifier><identifier>DOI: 10.1134/S0026893318060067</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Antiviral agents ; Biochemistry ; Biomedical and Life Sciences ; Cytosine ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA damage ; DNA polymerase ; DNA repair ; DNA-directed DNA polymerase ; Endonuclease ; HIV ; Human Genetics ; Human immunodeficiency virus ; Insertion ; Life Sciences ; Nucleosides ; Nucleotides ; Phosphodiesterase ; Primers ; Proofreading ; Ribonucleic acid ; Ribose ; RNA ; RNA-directed DNA polymerase ; Structural-Functional Analysis of Biopolymers and Their Complexes</subject><ispartof>Molecular biology (New York), 2018-11, Vol.52 (6), p.922-928</ispartof><rights>Pleiades Publishing, Inc. 2018</rights><rights>Molecular Biology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3f0eb1887ab38bfb85c9e784d9e893158bcf68f1b6ce5d3871182f103ba6da583</citedby><cites>FETCH-LOGICAL-c316t-3f0eb1887ab38bfb85c9e784d9e893158bcf68f1b6ce5d3871182f103ba6da583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dyrkheeva, N. S.</creatorcontrib><creatorcontrib>Lebedeva, N. A.</creatorcontrib><creatorcontrib>Sherstyuk, Yu. V.</creatorcontrib><creatorcontrib>Abramova, T. V.</creatorcontrib><creatorcontrib>Silnikov, V. N.</creatorcontrib><creatorcontrib>Lavrik, O. I.</creatorcontrib><title>Excision of Carbohydrate-Modified dNMP Analogues from DNA 3' end by Human Apurinic/Apyrimidinic Endonuclease 1 (APE1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1)</title><title>Molecular biology (New York)</title><addtitle>Mol Biol</addtitle><description>We have studied the excision efficiency of human apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) on matched or mismatched bases located at the 3' end of DNA primers. We have used model DNA duplexes, which mimic DNA structures that occur during either replication (DNA with a 3' recessed end) or repair (DNA with a single-strand break). Both APE1 and TDP1 are more efficient in removing ribose-modified dNMP residues from mismatched pairs rather than canonical pairs. Thus, both of these enzymes may act as proofreading factors during the repair synthesis catalyzed by DNA polymerases including DNA polymerase β (Polβ). The design of new DNA polymerase inhibitors, which act as DNA or RNA chain terminators, is one of the main strategies in the development of antiviral agents. The excision efficacy of APE1 and TDP1 has also been studied for 3'-modified DNA duplexes that contain ddNMP or phosphorylated morpholino nucleosides (MorB) commonly used as terminators in the DNA synthesis. We have also investigated the insertion of ddNTP and morpholino nucleotides catalyzed by Polβ and human immunodeficiency virus reverse transcriptase. This experiment has pointed to MorCyt, cytosine-containing morpholino nucleoside, as a potential antiviral agent.</description><subject>Antiviral agents</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cytosine</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>DNA polymerase</subject><subject>DNA repair</subject><subject>DNA-directed DNA polymerase</subject><subject>Endonuclease</subject><subject>HIV</subject><subject>Human Genetics</subject><subject>Human immunodeficiency virus</subject><subject>Insertion</subject><subject>Life Sciences</subject><subject>Nucleosides</subject><subject>Nucleotides</subject><subject>Phosphodiesterase</subject><subject>Primers</subject><subject>Proofreading</subject><subject>Ribonucleic acid</subject><subject>Ribose</subject><subject>RNA</subject><subject>RNA-directed DNA polymerase</subject><subject>Structural-Functional Analysis of Biopolymers and Their Complexes</subject><issn>0026-8933</issn><issn>1608-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UVFLwzAQDqLgnP4A3wI-6B6quWZts8eyTSdsc-B8LkmTbB1dU5MV7L_xp5qygQ8iHBzHfd93990hdAvkEYAOn94JCWM2ohQYiQmJkzPUg5iwgIbD6Bz1unbQ9S_RlXM7QsBH2EPf06-8cIWpsNF4zK0w21ZaflDBwshCF0piuVyscFrx0mwa5bC2Zo8nyxTTe6wqiUWLZ82eVzitG1tURf6U1q0t9oXsCjytpKmavFTcKQz4IV1NYYC5J65ba1xbBp3WamtcvfUTlTsoe4KuJysYXKMLzUunbk65jz6ep-vxLJi_vbyO03mQU4gPAdVECWAs4YIyoQWL8pFK2FCOlHcNERO5jpkGEecqkpQlACzUQKjgseQRo310d9Strfn0Pg_ZzjTWu3ZZ6A8JQCISeRQcUbnf3Vmls9pb5bbNgGTdI7I_j_Cc8MhxHlttlP1V_p_0AxQuiIo</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Dyrkheeva, N. S.</creator><creator>Lebedeva, N. A.</creator><creator>Sherstyuk, Yu. V.</creator><creator>Abramova, T. V.</creator><creator>Silnikov, V. N.</creator><creator>Lavrik, O. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20181101</creationdate><title>Excision of Carbohydrate-Modified dNMP Analogues from DNA 3' end by Human Apurinic/Apyrimidinic Endonuclease 1 (APE1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1)</title><author>Dyrkheeva, N. S. ; Lebedeva, N. A. ; Sherstyuk, Yu. V. ; Abramova, T. V. ; Silnikov, V. N. ; Lavrik, O. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3f0eb1887ab38bfb85c9e784d9e893158bcf68f1b6ce5d3871182f103ba6da583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antiviral agents</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cytosine</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>DNA polymerase</topic><topic>DNA repair</topic><topic>DNA-directed DNA polymerase</topic><topic>Endonuclease</topic><topic>HIV</topic><topic>Human Genetics</topic><topic>Human immunodeficiency virus</topic><topic>Insertion</topic><topic>Life Sciences</topic><topic>Nucleosides</topic><topic>Nucleotides</topic><topic>Phosphodiesterase</topic><topic>Primers</topic><topic>Proofreading</topic><topic>Ribonucleic acid</topic><topic>Ribose</topic><topic>RNA</topic><topic>RNA-directed DNA polymerase</topic><topic>Structural-Functional Analysis of Biopolymers and Their Complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dyrkheeva, N. S.</creatorcontrib><creatorcontrib>Lebedeva, N. A.</creatorcontrib><creatorcontrib>Sherstyuk, Yu. V.</creatorcontrib><creatorcontrib>Abramova, T. V.</creatorcontrib><creatorcontrib>Silnikov, V. N.</creatorcontrib><creatorcontrib>Lavrik, O. I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Molecular biology (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dyrkheeva, N. S.</au><au>Lebedeva, N. A.</au><au>Sherstyuk, Yu. V.</au><au>Abramova, T. V.</au><au>Silnikov, V. N.</au><au>Lavrik, O. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excision of Carbohydrate-Modified dNMP Analogues from DNA 3' end by Human Apurinic/Apyrimidinic Endonuclease 1 (APE1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1)</atitle><jtitle>Molecular biology (New York)</jtitle><stitle>Mol Biol</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>52</volume><issue>6</issue><spage>922</spage><epage>928</epage><pages>922-928</pages><issn>0026-8933</issn><eissn>1608-3245</eissn><abstract>We have studied the excision efficiency of human apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) on matched or mismatched bases located at the 3' end of DNA primers. We have used model DNA duplexes, which mimic DNA structures that occur during either replication (DNA with a 3' recessed end) or repair (DNA with a single-strand break). Both APE1 and TDP1 are more efficient in removing ribose-modified dNMP residues from mismatched pairs rather than canonical pairs. Thus, both of these enzymes may act as proofreading factors during the repair synthesis catalyzed by DNA polymerases including DNA polymerase β (Polβ). The design of new DNA polymerase inhibitors, which act as DNA or RNA chain terminators, is one of the main strategies in the development of antiviral agents. The excision efficacy of APE1 and TDP1 has also been studied for 3'-modified DNA duplexes that contain ddNMP or phosphorylated morpholino nucleosides (MorB) commonly used as terminators in the DNA synthesis. We have also investigated the insertion of ddNTP and morpholino nucleotides catalyzed by Polβ and human immunodeficiency virus reverse transcriptase. This experiment has pointed to MorCyt, cytosine-containing morpholino nucleoside, as a potential antiviral agent.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0026893318060067</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-8933 |
ispartof | Molecular biology (New York), 2018-11, Vol.52 (6), p.922-928 |
issn | 0026-8933 1608-3245 |
language | eng |
recordid | cdi_proquest_journals_2160110505 |
source | Springer Link |
subjects | Antiviral agents Biochemistry Biomedical and Life Sciences Cytosine Deoxyribonucleic acid DNA DNA biosynthesis DNA damage DNA polymerase DNA repair DNA-directed DNA polymerase Endonuclease HIV Human Genetics Human immunodeficiency virus Insertion Life Sciences Nucleosides Nucleotides Phosphodiesterase Primers Proofreading Ribonucleic acid Ribose RNA RNA-directed DNA polymerase Structural-Functional Analysis of Biopolymers and Their Complexes |
title | Excision of Carbohydrate-Modified dNMP Analogues from DNA 3' end by Human Apurinic/Apyrimidinic Endonuclease 1 (APE1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excision%20of%20Carbohydrate-Modified%20dNMP%20Analogues%20from%20DNA%203'%20end%20by%20Human%20Apurinic/Apyrimidinic%20Endonuclease%201%20(APE1)%20and%20Tyrosyl-DNA%20Phosphodiesterase%201%20(TDP1)&rft.jtitle=Molecular%20biology%20(New%20York)&rft.au=Dyrkheeva,%20N.%20S.&rft.date=2018-11-01&rft.volume=52&rft.issue=6&rft.spage=922&rft.epage=928&rft.pages=922-928&rft.issn=0026-8933&rft.eissn=1608-3245&rft_id=info:doi/10.1134/S0026893318060067&rft_dat=%3Cproquest_cross%3E2160110505%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-3f0eb1887ab38bfb85c9e784d9e893158bcf68f1b6ce5d3871182f103ba6da583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2160110505&rft_id=info:pmid/&rfr_iscdi=true |