Loading…

Synthesis on aggregation of colloidal solutions of ICG-active silica nanoparticles and their application in in‐vivo fluorescence imaging

This study reports two findings. The first is a method for preparing a colloidal solution of silica (SiO2) nanoparticles activated with fluorescent dye or fluorescent dye-active SiO2 nanoparticles. Preparation of a colloid solution of spherical SiO2 nanoparticles with an average size of 109.4 ± 8.6 ...

Full description

Saved in:
Bibliographic Details
Published in:Materials chemistry and physics 2018-12, Vol.220, p.201-207
Main Authors: Shindo, Yuta, Inose, Tomoya, Kubota, Yohsuke, Oikawa, Takahiro, Tokunaga, Masayuki, Kamei, Takashi, Gonda, Kohsuke, Kobayashi, Yoshio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-3e54c09690eb931fec7f19d4d2870f4dc961585827d954c64aa5f7d204844eab3
cites cdi_FETCH-LOGICAL-c349t-3e54c09690eb931fec7f19d4d2870f4dc961585827d954c64aa5f7d204844eab3
container_end_page 207
container_issue
container_start_page 201
container_title Materials chemistry and physics
container_volume 220
creator Shindo, Yuta
Inose, Tomoya
Kubota, Yohsuke
Oikawa, Takahiro
Tokunaga, Masayuki
Kamei, Takashi
Gonda, Kohsuke
Kobayashi, Yoshio
description This study reports two findings. The first is a method for preparing a colloidal solution of silica (SiO2) nanoparticles activated with fluorescent dye or fluorescent dye-active SiO2 nanoparticles. Preparation of a colloid solution of spherical SiO2 nanoparticles with an average size of 109.4 ± 8.6 nm was performed using the sol-gel method at 35 °C using 0.2 M tetraethylorthosilicate, 25 M H2O, and 0.01 M NaOH in ethanol. Two kinds of cationic chemicals (poly-diallyldimethylammonium chloride (PDADMAC) and (3-aminopropyl) triethoxysilane (APES) were examined for surface-modification or surface-cationization of the SiO2 nanoparticles (SiO2/PDADMAC and SiO2/APES). To activate the SiO2 nanoparticles with fluorescent dye, indocyanine green (ICG) molecules were fixed on the surface-modified SiO2 nanoparticles by mixing ICG dissolved in albumin aqueous solution and the surface-modified SiO2 nanoparticle colloid solution (SiO2/PDADMAC/ICG and SiO2/APES/ICG) through electrostatic aggregation. The second finding is the verification of the fluorescence ability of the ICG-active SiO2 nanoparticle colloid solutions. Both the ICG-active SiO2 nanoparticle colloid solutions exerted fluorescence even at high ICG concentrations. Mouse tissues could be imaged by injecting the ICG-immobilized SiO2 nanoparticle colloid solution into the tail vein of the mouse and measuring the emitted fluorescence intensity. Pulmonary embolism was avoided in the SiO2/APES/ICG particle colloid solution-injected group, in which the particles reached the tissues more efficiently than in the SiO2/PDADMAC/ICG nanoparticles-injected group. [Display omitted] •Spherical SiO2 nanoparticles were fabricated using the sol-gel method.•The SiO2 nanoparticles were surface-modified with polymer or silane-coupling agent.•Indocyanine green (ICG) was electrostatically fixed on the modified particle surfaces.•Mouse tissues could be imaged by the injection of the ICG-active particles.
doi_str_mv 10.1016/j.matchemphys.2018.08.073
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2160716716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058418307387</els_id><sourcerecordid>2160716716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3e54c09690eb931fec7f19d4d2870f4dc961585827d954c64aa5f7d204844eab3</originalsourceid><addsrcrecordid>eNqNULFOwzAQtRBIlMI_GDGn2LETxyOqoCBVYgBmy9iX1FUaBzut1I2ZiW_kS3AoAyPSk-509-7d3UPokpIZJbS8Xs82ejAr2PSrfZzlhFYzkiDYEZrQSsiMMZofownJC56RouKn6CzGNSFUUMom6ONp3w0riC5i32HdNAEaPbiU-xob37beWd3i6NvtWI1j-WG-yLQZ3A5wdK0zGne6870OgzMtRKw7i5OmC1j3_dj_0XMjvt4_d27ncd1ufYBooDOA3UY3rmvO0Umt2wgXv3GKXu5un-f32fJx8TC_WWaGcTlkDApuiCwlgVfJaA1G1FRabvNKkJpbI0taVEWVCysTs-RaF7WwOeEV56Bf2RRdHXT74N-2EAe19tvQpZUqpyURtExILHlgmeBjDFCrPqRDw15Rokbr1Vr9sV6N1iuSIFianR9mIb2xcxBUNG581boAZlDWu3-ofANuSZct</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2160716716</pqid></control><display><type>article</type><title>Synthesis on aggregation of colloidal solutions of ICG-active silica nanoparticles and their application in in‐vivo fluorescence imaging</title><source>ScienceDirect Freedom Collection</source><creator>Shindo, Yuta ; Inose, Tomoya ; Kubota, Yohsuke ; Oikawa, Takahiro ; Tokunaga, Masayuki ; Kamei, Takashi ; Gonda, Kohsuke ; Kobayashi, Yoshio</creator><creatorcontrib>Shindo, Yuta ; Inose, Tomoya ; Kubota, Yohsuke ; Oikawa, Takahiro ; Tokunaga, Masayuki ; Kamei, Takashi ; Gonda, Kohsuke ; Kobayashi, Yoshio</creatorcontrib><description>This study reports two findings. The first is a method for preparing a colloidal solution of silica (SiO2) nanoparticles activated with fluorescent dye or fluorescent dye-active SiO2 nanoparticles. Preparation of a colloid solution of spherical SiO2 nanoparticles with an average size of 109.4 ± 8.6 nm was performed using the sol-gel method at 35 °C using 0.2 M tetraethylorthosilicate, 25 M H2O, and 0.01 M NaOH in ethanol. Two kinds of cationic chemicals (poly-diallyldimethylammonium chloride (PDADMAC) and (3-aminopropyl) triethoxysilane (APES) were examined for surface-modification or surface-cationization of the SiO2 nanoparticles (SiO2/PDADMAC and SiO2/APES). To activate the SiO2 nanoparticles with fluorescent dye, indocyanine green (ICG) molecules were fixed on the surface-modified SiO2 nanoparticles by mixing ICG dissolved in albumin aqueous solution and the surface-modified SiO2 nanoparticle colloid solution (SiO2/PDADMAC/ICG and SiO2/APES/ICG) through electrostatic aggregation. The second finding is the verification of the fluorescence ability of the ICG-active SiO2 nanoparticle colloid solutions. Both the ICG-active SiO2 nanoparticle colloid solutions exerted fluorescence even at high ICG concentrations. Mouse tissues could be imaged by injecting the ICG-immobilized SiO2 nanoparticle colloid solution into the tail vein of the mouse and measuring the emitted fluorescence intensity. Pulmonary embolism was avoided in the SiO2/APES/ICG particle colloid solution-injected group, in which the particles reached the tissues more efficiently than in the SiO2/PDADMAC/ICG nanoparticles-injected group. [Display omitted] •Spherical SiO2 nanoparticles were fabricated using the sol-gel method.•The SiO2 nanoparticles were surface-modified with polymer or silane-coupling agent.•Indocyanine green (ICG) was electrostatically fixed on the modified particle surfaces.•Mouse tissues could be imaged by the injection of the ICG-active particles.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2018.08.073</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Agglomeration ; Aqueous solutions ; Cations ; Chemical synthesis ; Colloids ; Ethanol ; Fluorescence ; Fluorescent dyes ; Fluorescent marker ; Indocyanine green ; Nanoparticles ; Organic chemistry ; Silica ; Silicon dioxide ; Sodium hydroxide ; Sol-gel ; Sol-gel processes</subject><ispartof>Materials chemistry and physics, 2018-12, Vol.220, p.201-207</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3e54c09690eb931fec7f19d4d2870f4dc961585827d954c64aa5f7d204844eab3</citedby><cites>FETCH-LOGICAL-c349t-3e54c09690eb931fec7f19d4d2870f4dc961585827d954c64aa5f7d204844eab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shindo, Yuta</creatorcontrib><creatorcontrib>Inose, Tomoya</creatorcontrib><creatorcontrib>Kubota, Yohsuke</creatorcontrib><creatorcontrib>Oikawa, Takahiro</creatorcontrib><creatorcontrib>Tokunaga, Masayuki</creatorcontrib><creatorcontrib>Kamei, Takashi</creatorcontrib><creatorcontrib>Gonda, Kohsuke</creatorcontrib><creatorcontrib>Kobayashi, Yoshio</creatorcontrib><title>Synthesis on aggregation of colloidal solutions of ICG-active silica nanoparticles and their application in in‐vivo fluorescence imaging</title><title>Materials chemistry and physics</title><description>This study reports two findings. The first is a method for preparing a colloidal solution of silica (SiO2) nanoparticles activated with fluorescent dye or fluorescent dye-active SiO2 nanoparticles. Preparation of a colloid solution of spherical SiO2 nanoparticles with an average size of 109.4 ± 8.6 nm was performed using the sol-gel method at 35 °C using 0.2 M tetraethylorthosilicate, 25 M H2O, and 0.01 M NaOH in ethanol. Two kinds of cationic chemicals (poly-diallyldimethylammonium chloride (PDADMAC) and (3-aminopropyl) triethoxysilane (APES) were examined for surface-modification or surface-cationization of the SiO2 nanoparticles (SiO2/PDADMAC and SiO2/APES). To activate the SiO2 nanoparticles with fluorescent dye, indocyanine green (ICG) molecules were fixed on the surface-modified SiO2 nanoparticles by mixing ICG dissolved in albumin aqueous solution and the surface-modified SiO2 nanoparticle colloid solution (SiO2/PDADMAC/ICG and SiO2/APES/ICG) through electrostatic aggregation. The second finding is the verification of the fluorescence ability of the ICG-active SiO2 nanoparticle colloid solutions. Both the ICG-active SiO2 nanoparticle colloid solutions exerted fluorescence even at high ICG concentrations. Mouse tissues could be imaged by injecting the ICG-immobilized SiO2 nanoparticle colloid solution into the tail vein of the mouse and measuring the emitted fluorescence intensity. Pulmonary embolism was avoided in the SiO2/APES/ICG particle colloid solution-injected group, in which the particles reached the tissues more efficiently than in the SiO2/PDADMAC/ICG nanoparticles-injected group. [Display omitted] •Spherical SiO2 nanoparticles were fabricated using the sol-gel method.•The SiO2 nanoparticles were surface-modified with polymer or silane-coupling agent.•Indocyanine green (ICG) was electrostatically fixed on the modified particle surfaces.•Mouse tissues could be imaged by the injection of the ICG-active particles.</description><subject>Agglomeration</subject><subject>Aqueous solutions</subject><subject>Cations</subject><subject>Chemical synthesis</subject><subject>Colloids</subject><subject>Ethanol</subject><subject>Fluorescence</subject><subject>Fluorescent dyes</subject><subject>Fluorescent marker</subject><subject>Indocyanine green</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Sodium hydroxide</subject><subject>Sol-gel</subject><subject>Sol-gel processes</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNULFOwzAQtRBIlMI_GDGn2LETxyOqoCBVYgBmy9iX1FUaBzut1I2ZiW_kS3AoAyPSk-509-7d3UPokpIZJbS8Xs82ejAr2PSrfZzlhFYzkiDYEZrQSsiMMZofownJC56RouKn6CzGNSFUUMom6ONp3w0riC5i32HdNAEaPbiU-xob37beWd3i6NvtWI1j-WG-yLQZ3A5wdK0zGne6870OgzMtRKw7i5OmC1j3_dj_0XMjvt4_d27ncd1ufYBooDOA3UY3rmvO0Umt2wgXv3GKXu5un-f32fJx8TC_WWaGcTlkDApuiCwlgVfJaA1G1FRabvNKkJpbI0taVEWVCysTs-RaF7WwOeEV56Bf2RRdHXT74N-2EAe19tvQpZUqpyURtExILHlgmeBjDFCrPqRDw15Rokbr1Vr9sV6N1iuSIFianR9mIb2xcxBUNG581boAZlDWu3-ofANuSZct</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Shindo, Yuta</creator><creator>Inose, Tomoya</creator><creator>Kubota, Yohsuke</creator><creator>Oikawa, Takahiro</creator><creator>Tokunaga, Masayuki</creator><creator>Kamei, Takashi</creator><creator>Gonda, Kohsuke</creator><creator>Kobayashi, Yoshio</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181201</creationdate><title>Synthesis on aggregation of colloidal solutions of ICG-active silica nanoparticles and their application in in‐vivo fluorescence imaging</title><author>Shindo, Yuta ; Inose, Tomoya ; Kubota, Yohsuke ; Oikawa, Takahiro ; Tokunaga, Masayuki ; Kamei, Takashi ; Gonda, Kohsuke ; Kobayashi, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3e54c09690eb931fec7f19d4d2870f4dc961585827d954c64aa5f7d204844eab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agglomeration</topic><topic>Aqueous solutions</topic><topic>Cations</topic><topic>Chemical synthesis</topic><topic>Colloids</topic><topic>Ethanol</topic><topic>Fluorescence</topic><topic>Fluorescent dyes</topic><topic>Fluorescent marker</topic><topic>Indocyanine green</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Sodium hydroxide</topic><topic>Sol-gel</topic><topic>Sol-gel processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shindo, Yuta</creatorcontrib><creatorcontrib>Inose, Tomoya</creatorcontrib><creatorcontrib>Kubota, Yohsuke</creatorcontrib><creatorcontrib>Oikawa, Takahiro</creatorcontrib><creatorcontrib>Tokunaga, Masayuki</creatorcontrib><creatorcontrib>Kamei, Takashi</creatorcontrib><creatorcontrib>Gonda, Kohsuke</creatorcontrib><creatorcontrib>Kobayashi, Yoshio</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shindo, Yuta</au><au>Inose, Tomoya</au><au>Kubota, Yohsuke</au><au>Oikawa, Takahiro</au><au>Tokunaga, Masayuki</au><au>Kamei, Takashi</au><au>Gonda, Kohsuke</au><au>Kobayashi, Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis on aggregation of colloidal solutions of ICG-active silica nanoparticles and their application in in‐vivo fluorescence imaging</atitle><jtitle>Materials chemistry and physics</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>220</volume><spage>201</spage><epage>207</epage><pages>201-207</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>This study reports two findings. The first is a method for preparing a colloidal solution of silica (SiO2) nanoparticles activated with fluorescent dye or fluorescent dye-active SiO2 nanoparticles. Preparation of a colloid solution of spherical SiO2 nanoparticles with an average size of 109.4 ± 8.6 nm was performed using the sol-gel method at 35 °C using 0.2 M tetraethylorthosilicate, 25 M H2O, and 0.01 M NaOH in ethanol. Two kinds of cationic chemicals (poly-diallyldimethylammonium chloride (PDADMAC) and (3-aminopropyl) triethoxysilane (APES) were examined for surface-modification or surface-cationization of the SiO2 nanoparticles (SiO2/PDADMAC and SiO2/APES). To activate the SiO2 nanoparticles with fluorescent dye, indocyanine green (ICG) molecules were fixed on the surface-modified SiO2 nanoparticles by mixing ICG dissolved in albumin aqueous solution and the surface-modified SiO2 nanoparticle colloid solution (SiO2/PDADMAC/ICG and SiO2/APES/ICG) through electrostatic aggregation. The second finding is the verification of the fluorescence ability of the ICG-active SiO2 nanoparticle colloid solutions. Both the ICG-active SiO2 nanoparticle colloid solutions exerted fluorescence even at high ICG concentrations. Mouse tissues could be imaged by injecting the ICG-immobilized SiO2 nanoparticle colloid solution into the tail vein of the mouse and measuring the emitted fluorescence intensity. Pulmonary embolism was avoided in the SiO2/APES/ICG particle colloid solution-injected group, in which the particles reached the tissues more efficiently than in the SiO2/PDADMAC/ICG nanoparticles-injected group. [Display omitted] •Spherical SiO2 nanoparticles were fabricated using the sol-gel method.•The SiO2 nanoparticles were surface-modified with polymer or silane-coupling agent.•Indocyanine green (ICG) was electrostatically fixed on the modified particle surfaces.•Mouse tissues could be imaged by the injection of the ICG-active particles.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2018.08.073</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2018-12, Vol.220, p.201-207
issn 0254-0584
1879-3312
language eng
recordid cdi_proquest_journals_2160716716
source ScienceDirect Freedom Collection
subjects Agglomeration
Aqueous solutions
Cations
Chemical synthesis
Colloids
Ethanol
Fluorescence
Fluorescent dyes
Fluorescent marker
Indocyanine green
Nanoparticles
Organic chemistry
Silica
Silicon dioxide
Sodium hydroxide
Sol-gel
Sol-gel processes
title Synthesis on aggregation of colloidal solutions of ICG-active silica nanoparticles and their application in in‐vivo fluorescence imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20on%20aggregation%20of%20colloidal%20solutions%20of%20ICG-active%20silica%20nanoparticles%20and%20their%20application%20in%20in%E2%80%90vivo%20fluorescence%20imaging&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Shindo,%20Yuta&rft.date=2018-12-01&rft.volume=220&rft.spage=201&rft.epage=207&rft.pages=201-207&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2018.08.073&rft_dat=%3Cproquest_cross%3E2160716716%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-3e54c09690eb931fec7f19d4d2870f4dc961585827d954c64aa5f7d204844eab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2160716716&rft_id=info:pmid/&rfr_iscdi=true