Loading…
Thermal rectification via sequential deactivation of magnons
Theoretically, a thermal rectifier is a solid state device which presents a greater heat flux in the forward than in the reverse thermal bias, Q+ > Q−. Ferromagnetic materials, which can exist in two magnetic states with distinct thermal conductivities, provide a unique opportunity to realize non...
Saved in:
Published in: | Applied physics letters 2018-12, Vol.113 (26) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-f7026eaaea942993344804cb0626c5eac7106f7e0982e789aa29a04817d2529f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-f7026eaaea942993344804cb0626c5eac7106f7e0982e789aa29a04817d2529f3 |
container_end_page | |
container_issue | 26 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 113 |
creator | Martinez-Flores, J. J. Varshney, Dinesh Alvarez-Quintana, J. |
description | Theoretically, a thermal rectifier is a solid state device which presents a greater heat flux in the forward than in the reverse thermal bias, Q+ > Q−. Ferromagnetic materials, which can exist in two magnetic states with distinct thermal conductivities, provide a unique opportunity to realize nonlinear thermal transport. Herein, by realizing a proof-of concept device consisting of manganites type La1-xSrxMnO3, we introduce a two-segment thermal diode that manipulates the heat via a sequential deactivation of magnons in each segment through their respective Curie temperatures Tc. Thermal measurements of the diode show that as the sequential magnetic transitions occur, the rectification factor increases. We interpret such an enhancement in the rectification factor due to drastic changes in the thermal conductance of the device as a consequence of the spin-disorder dominance above Tc. Furthermore, the results are validated via an analytical model within the framework of the Fourier law by using power law approximations of the temperature-dependent thermal conductivity of segments. Hence, sequential deactivation of magnons provides an alternative route so as to develop enhanced performance thermal rectifiers. |
doi_str_mv | 10.1063/1.5063479 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2160952495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2160952495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-f7026eaaea942993344804cb0626c5eac7106f7e0982e789aa29a04817d2529f3</originalsourceid><addsrcrecordid>eNqdkM1LAzEQxYMoWKsH_4MFTwpbJ1-bDXiRUj-g4KWew5gmmtJuarIt-N8b3YJ3T8Pwfrx58wi5pDCh0PBbOpFlCKWPyIiCUjWntD0mIwDgdaMlPSVnOa_KKhnnI3K3-HBpg-sqOdsHHyz2IXbVPmCV3efOdX0o4tJhUfeDFn21wfcudvmcnHhcZ3dxmGPy-jBbTJ_q-cvj8_R-XlvOVF97BaxxiA61YFpzLkQLwr5Bwxori7Uq0b1yoFvmVKsRmUYQLVVLJpn2fEyuBt9tiiVT7s0q7lJXThpGG9CSCS0LdT1QNsWck_Nmm8IG05ehYH7KMdQcyinszcBmG_rft_4H72P6A8126fk3gg5xXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2160952495</pqid></control><display><type>article</type><title>Thermal rectification via sequential deactivation of magnons</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Martinez-Flores, J. J. ; Varshney, Dinesh ; Alvarez-Quintana, J.</creator><creatorcontrib>Martinez-Flores, J. J. ; Varshney, Dinesh ; Alvarez-Quintana, J.</creatorcontrib><description>Theoretically, a thermal rectifier is a solid state device which presents a greater heat flux in the forward than in the reverse thermal bias, Q+ > Q−. Ferromagnetic materials, which can exist in two magnetic states with distinct thermal conductivities, provide a unique opportunity to realize nonlinear thermal transport. Herein, by realizing a proof-of concept device consisting of manganites type La1-xSrxMnO3, we introduce a two-segment thermal diode that manipulates the heat via a sequential deactivation of magnons in each segment through their respective Curie temperatures Tc. Thermal measurements of the diode show that as the sequential magnetic transitions occur, the rectification factor increases. We interpret such an enhancement in the rectification factor due to drastic changes in the thermal conductance of the device as a consequence of the spin-disorder dominance above Tc. Furthermore, the results are validated via an analytical model within the framework of the Fourier law by using power law approximations of the temperature-dependent thermal conductivity of segments. Hence, sequential deactivation of magnons provides an alternative route so as to develop enhanced performance thermal rectifiers.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5063479</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Deactivation ; Ferromagnetic materials ; Fourier law ; Heat flux ; Magnetic transitions ; Magnons ; Mathematical models ; Performance enhancement ; Rectifiers ; Solid state devices ; Temperature dependence ; Thermal conductivity ; Thermal measurement</subject><ispartof>Applied physics letters, 2018-12, Vol.113 (26)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-f7026eaaea942993344804cb0626c5eac7106f7e0982e789aa29a04817d2529f3</citedby><cites>FETCH-LOGICAL-c327t-f7026eaaea942993344804cb0626c5eac7106f7e0982e789aa29a04817d2529f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5063479$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Martinez-Flores, J. J.</creatorcontrib><creatorcontrib>Varshney, Dinesh</creatorcontrib><creatorcontrib>Alvarez-Quintana, J.</creatorcontrib><title>Thermal rectification via sequential deactivation of magnons</title><title>Applied physics letters</title><description>Theoretically, a thermal rectifier is a solid state device which presents a greater heat flux in the forward than in the reverse thermal bias, Q+ > Q−. Ferromagnetic materials, which can exist in two magnetic states with distinct thermal conductivities, provide a unique opportunity to realize nonlinear thermal transport. Herein, by realizing a proof-of concept device consisting of manganites type La1-xSrxMnO3, we introduce a two-segment thermal diode that manipulates the heat via a sequential deactivation of magnons in each segment through their respective Curie temperatures Tc. Thermal measurements of the diode show that as the sequential magnetic transitions occur, the rectification factor increases. We interpret such an enhancement in the rectification factor due to drastic changes in the thermal conductance of the device as a consequence of the spin-disorder dominance above Tc. Furthermore, the results are validated via an analytical model within the framework of the Fourier law by using power law approximations of the temperature-dependent thermal conductivity of segments. Hence, sequential deactivation of magnons provides an alternative route so as to develop enhanced performance thermal rectifiers.</description><subject>Applied physics</subject><subject>Deactivation</subject><subject>Ferromagnetic materials</subject><subject>Fourier law</subject><subject>Heat flux</subject><subject>Magnetic transitions</subject><subject>Magnons</subject><subject>Mathematical models</subject><subject>Performance enhancement</subject><subject>Rectifiers</subject><subject>Solid state devices</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Thermal measurement</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkM1LAzEQxYMoWKsH_4MFTwpbJ1-bDXiRUj-g4KWew5gmmtJuarIt-N8b3YJ3T8Pwfrx58wi5pDCh0PBbOpFlCKWPyIiCUjWntD0mIwDgdaMlPSVnOa_KKhnnI3K3-HBpg-sqOdsHHyz2IXbVPmCV3efOdX0o4tJhUfeDFn21wfcudvmcnHhcZ3dxmGPy-jBbTJ_q-cvj8_R-XlvOVF97BaxxiA61YFpzLkQLwr5Bwxori7Uq0b1yoFvmVKsRmUYQLVVLJpn2fEyuBt9tiiVT7s0q7lJXThpGG9CSCS0LdT1QNsWck_Nmm8IG05ehYH7KMdQcyinszcBmG_rft_4H72P6A8126fk3gg5xXA</recordid><startdate>20181224</startdate><enddate>20181224</enddate><creator>Martinez-Flores, J. J.</creator><creator>Varshney, Dinesh</creator><creator>Alvarez-Quintana, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181224</creationdate><title>Thermal rectification via sequential deactivation of magnons</title><author>Martinez-Flores, J. J. ; Varshney, Dinesh ; Alvarez-Quintana, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-f7026eaaea942993344804cb0626c5eac7106f7e0982e789aa29a04817d2529f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Deactivation</topic><topic>Ferromagnetic materials</topic><topic>Fourier law</topic><topic>Heat flux</topic><topic>Magnetic transitions</topic><topic>Magnons</topic><topic>Mathematical models</topic><topic>Performance enhancement</topic><topic>Rectifiers</topic><topic>Solid state devices</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Thermal measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Flores, J. J.</creatorcontrib><creatorcontrib>Varshney, Dinesh</creatorcontrib><creatorcontrib>Alvarez-Quintana, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Flores, J. J.</au><au>Varshney, Dinesh</au><au>Alvarez-Quintana, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal rectification via sequential deactivation of magnons</atitle><jtitle>Applied physics letters</jtitle><date>2018-12-24</date><risdate>2018</risdate><volume>113</volume><issue>26</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Theoretically, a thermal rectifier is a solid state device which presents a greater heat flux in the forward than in the reverse thermal bias, Q+ > Q−. Ferromagnetic materials, which can exist in two magnetic states with distinct thermal conductivities, provide a unique opportunity to realize nonlinear thermal transport. Herein, by realizing a proof-of concept device consisting of manganites type La1-xSrxMnO3, we introduce a two-segment thermal diode that manipulates the heat via a sequential deactivation of magnons in each segment through their respective Curie temperatures Tc. Thermal measurements of the diode show that as the sequential magnetic transitions occur, the rectification factor increases. We interpret such an enhancement in the rectification factor due to drastic changes in the thermal conductance of the device as a consequence of the spin-disorder dominance above Tc. Furthermore, the results are validated via an analytical model within the framework of the Fourier law by using power law approximations of the temperature-dependent thermal conductivity of segments. Hence, sequential deactivation of magnons provides an alternative route so as to develop enhanced performance thermal rectifiers.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5063479</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2018-12, Vol.113 (26) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2160952495 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Applied physics Deactivation Ferromagnetic materials Fourier law Heat flux Magnetic transitions Magnons Mathematical models Performance enhancement Rectifiers Solid state devices Temperature dependence Thermal conductivity Thermal measurement |
title | Thermal rectification via sequential deactivation of magnons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20rectification%20via%20sequential%20deactivation%20of%20magnons&rft.jtitle=Applied%20physics%20letters&rft.au=Martinez-Flores,%20J.%20J.&rft.date=2018-12-24&rft.volume=113&rft.issue=26&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5063479&rft_dat=%3Cproquest_cross%3E2160952495%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-f7026eaaea942993344804cb0626c5eac7106f7e0982e789aa29a04817d2529f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2160952495&rft_id=info:pmid/&rfr_iscdi=true |