Loading…

Thermal rectification via sequential deactivation of magnons

Theoretically, a thermal rectifier is a solid state device which presents a greater heat flux in the forward than in the reverse thermal bias, Q+ > Q−. Ferromagnetic materials, which can exist in two magnetic states with distinct thermal conductivities, provide a unique opportunity to realize non...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2018-12, Vol.113 (26)
Main Authors: Martinez-Flores, J. J., Varshney, Dinesh, Alvarez-Quintana, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-f7026eaaea942993344804cb0626c5eac7106f7e0982e789aa29a04817d2529f3
cites cdi_FETCH-LOGICAL-c327t-f7026eaaea942993344804cb0626c5eac7106f7e0982e789aa29a04817d2529f3
container_end_page
container_issue 26
container_start_page
container_title Applied physics letters
container_volume 113
creator Martinez-Flores, J. J.
Varshney, Dinesh
Alvarez-Quintana, J.
description Theoretically, a thermal rectifier is a solid state device which presents a greater heat flux in the forward than in the reverse thermal bias, Q+ > Q−. Ferromagnetic materials, which can exist in two magnetic states with distinct thermal conductivities, provide a unique opportunity to realize nonlinear thermal transport. Herein, by realizing a proof-of concept device consisting of manganites type La1-xSrxMnO3, we introduce a two-segment thermal diode that manipulates the heat via a sequential deactivation of magnons in each segment through their respective Curie temperatures Tc. Thermal measurements of the diode show that as the sequential magnetic transitions occur, the rectification factor increases. We interpret such an enhancement in the rectification factor due to drastic changes in the thermal conductance of the device as a consequence of the spin-disorder dominance above Tc. Furthermore, the results are validated via an analytical model within the framework of the Fourier law by using power law approximations of the temperature-dependent thermal conductivity of segments. Hence, sequential deactivation of magnons provides an alternative route so as to develop enhanced performance thermal rectifiers.
doi_str_mv 10.1063/1.5063479
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2160952495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2160952495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-f7026eaaea942993344804cb0626c5eac7106f7e0982e789aa29a04817d2529f3</originalsourceid><addsrcrecordid>eNqdkM1LAzEQxYMoWKsH_4MFTwpbJ1-bDXiRUj-g4KWew5gmmtJuarIt-N8b3YJ3T8Pwfrx58wi5pDCh0PBbOpFlCKWPyIiCUjWntD0mIwDgdaMlPSVnOa_KKhnnI3K3-HBpg-sqOdsHHyz2IXbVPmCV3efOdX0o4tJhUfeDFn21wfcudvmcnHhcZ3dxmGPy-jBbTJ_q-cvj8_R-XlvOVF97BaxxiA61YFpzLkQLwr5Bwxori7Uq0b1yoFvmVKsRmUYQLVVLJpn2fEyuBt9tiiVT7s0q7lJXThpGG9CSCS0LdT1QNsWck_Nmm8IG05ehYH7KMdQcyinszcBmG_rft_4H72P6A8126fk3gg5xXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2160952495</pqid></control><display><type>article</type><title>Thermal rectification via sequential deactivation of magnons</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Martinez-Flores, J. J. ; Varshney, Dinesh ; Alvarez-Quintana, J.</creator><creatorcontrib>Martinez-Flores, J. J. ; Varshney, Dinesh ; Alvarez-Quintana, J.</creatorcontrib><description>Theoretically, a thermal rectifier is a solid state device which presents a greater heat flux in the forward than in the reverse thermal bias, Q+ &gt; Q−. Ferromagnetic materials, which can exist in two magnetic states with distinct thermal conductivities, provide a unique opportunity to realize nonlinear thermal transport. Herein, by realizing a proof-of concept device consisting of manganites type La1-xSrxMnO3, we introduce a two-segment thermal diode that manipulates the heat via a sequential deactivation of magnons in each segment through their respective Curie temperatures Tc. Thermal measurements of the diode show that as the sequential magnetic transitions occur, the rectification factor increases. We interpret such an enhancement in the rectification factor due to drastic changes in the thermal conductance of the device as a consequence of the spin-disorder dominance above Tc. Furthermore, the results are validated via an analytical model within the framework of the Fourier law by using power law approximations of the temperature-dependent thermal conductivity of segments. Hence, sequential deactivation of magnons provides an alternative route so as to develop enhanced performance thermal rectifiers.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5063479</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Deactivation ; Ferromagnetic materials ; Fourier law ; Heat flux ; Magnetic transitions ; Magnons ; Mathematical models ; Performance enhancement ; Rectifiers ; Solid state devices ; Temperature dependence ; Thermal conductivity ; Thermal measurement</subject><ispartof>Applied physics letters, 2018-12, Vol.113 (26)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-f7026eaaea942993344804cb0626c5eac7106f7e0982e789aa29a04817d2529f3</citedby><cites>FETCH-LOGICAL-c327t-f7026eaaea942993344804cb0626c5eac7106f7e0982e789aa29a04817d2529f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5063479$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Martinez-Flores, J. J.</creatorcontrib><creatorcontrib>Varshney, Dinesh</creatorcontrib><creatorcontrib>Alvarez-Quintana, J.</creatorcontrib><title>Thermal rectification via sequential deactivation of magnons</title><title>Applied physics letters</title><description>Theoretically, a thermal rectifier is a solid state device which presents a greater heat flux in the forward than in the reverse thermal bias, Q+ &gt; Q−. Ferromagnetic materials, which can exist in two magnetic states with distinct thermal conductivities, provide a unique opportunity to realize nonlinear thermal transport. Herein, by realizing a proof-of concept device consisting of manganites type La1-xSrxMnO3, we introduce a two-segment thermal diode that manipulates the heat via a sequential deactivation of magnons in each segment through their respective Curie temperatures Tc. Thermal measurements of the diode show that as the sequential magnetic transitions occur, the rectification factor increases. We interpret such an enhancement in the rectification factor due to drastic changes in the thermal conductance of the device as a consequence of the spin-disorder dominance above Tc. Furthermore, the results are validated via an analytical model within the framework of the Fourier law by using power law approximations of the temperature-dependent thermal conductivity of segments. Hence, sequential deactivation of magnons provides an alternative route so as to develop enhanced performance thermal rectifiers.</description><subject>Applied physics</subject><subject>Deactivation</subject><subject>Ferromagnetic materials</subject><subject>Fourier law</subject><subject>Heat flux</subject><subject>Magnetic transitions</subject><subject>Magnons</subject><subject>Mathematical models</subject><subject>Performance enhancement</subject><subject>Rectifiers</subject><subject>Solid state devices</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Thermal measurement</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkM1LAzEQxYMoWKsH_4MFTwpbJ1-bDXiRUj-g4KWew5gmmtJuarIt-N8b3YJ3T8Pwfrx58wi5pDCh0PBbOpFlCKWPyIiCUjWntD0mIwDgdaMlPSVnOa_KKhnnI3K3-HBpg-sqOdsHHyz2IXbVPmCV3efOdX0o4tJhUfeDFn21wfcudvmcnHhcZ3dxmGPy-jBbTJ_q-cvj8_R-XlvOVF97BaxxiA61YFpzLkQLwr5Bwxori7Uq0b1yoFvmVKsRmUYQLVVLJpn2fEyuBt9tiiVT7s0q7lJXThpGG9CSCS0LdT1QNsWck_Nmm8IG05ehYH7KMdQcyinszcBmG_rft_4H72P6A8126fk3gg5xXA</recordid><startdate>20181224</startdate><enddate>20181224</enddate><creator>Martinez-Flores, J. J.</creator><creator>Varshney, Dinesh</creator><creator>Alvarez-Quintana, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181224</creationdate><title>Thermal rectification via sequential deactivation of magnons</title><author>Martinez-Flores, J. J. ; Varshney, Dinesh ; Alvarez-Quintana, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-f7026eaaea942993344804cb0626c5eac7106f7e0982e789aa29a04817d2529f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Deactivation</topic><topic>Ferromagnetic materials</topic><topic>Fourier law</topic><topic>Heat flux</topic><topic>Magnetic transitions</topic><topic>Magnons</topic><topic>Mathematical models</topic><topic>Performance enhancement</topic><topic>Rectifiers</topic><topic>Solid state devices</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Thermal measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Flores, J. J.</creatorcontrib><creatorcontrib>Varshney, Dinesh</creatorcontrib><creatorcontrib>Alvarez-Quintana, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Flores, J. J.</au><au>Varshney, Dinesh</au><au>Alvarez-Quintana, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal rectification via sequential deactivation of magnons</atitle><jtitle>Applied physics letters</jtitle><date>2018-12-24</date><risdate>2018</risdate><volume>113</volume><issue>26</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Theoretically, a thermal rectifier is a solid state device which presents a greater heat flux in the forward than in the reverse thermal bias, Q+ &gt; Q−. Ferromagnetic materials, which can exist in two magnetic states with distinct thermal conductivities, provide a unique opportunity to realize nonlinear thermal transport. Herein, by realizing a proof-of concept device consisting of manganites type La1-xSrxMnO3, we introduce a two-segment thermal diode that manipulates the heat via a sequential deactivation of magnons in each segment through their respective Curie temperatures Tc. Thermal measurements of the diode show that as the sequential magnetic transitions occur, the rectification factor increases. We interpret such an enhancement in the rectification factor due to drastic changes in the thermal conductance of the device as a consequence of the spin-disorder dominance above Tc. Furthermore, the results are validated via an analytical model within the framework of the Fourier law by using power law approximations of the temperature-dependent thermal conductivity of segments. Hence, sequential deactivation of magnons provides an alternative route so as to develop enhanced performance thermal rectifiers.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5063479</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2018-12, Vol.113 (26)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2160952495
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Applied physics
Deactivation
Ferromagnetic materials
Fourier law
Heat flux
Magnetic transitions
Magnons
Mathematical models
Performance enhancement
Rectifiers
Solid state devices
Temperature dependence
Thermal conductivity
Thermal measurement
title Thermal rectification via sequential deactivation of magnons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20rectification%20via%20sequential%20deactivation%20of%20magnons&rft.jtitle=Applied%20physics%20letters&rft.au=Martinez-Flores,%20J.%20J.&rft.date=2018-12-24&rft.volume=113&rft.issue=26&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5063479&rft_dat=%3Cproquest_cross%3E2160952495%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-f7026eaaea942993344804cb0626c5eac7106f7e0982e789aa29a04817d2529f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2160952495&rft_id=info:pmid/&rfr_iscdi=true