Loading…
Lattice-mismatched semiconductor heterostructures
Semiconductor heterostructure is a critical building block for modern semiconductor devices. However, forming semiconductor heterostructures of lattice-mismatch has been a great challenge for several decades. Epitaxial growth is infeasible to form abrupt heterostructures with large lattice-mismatch...
Saved in:
Published in: | arXiv.org 2018-12 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Liu, Dong Cho, Sang June Jung-Hun Seo Kim, Kwangeun Kim, Munho Shi, Jian Yin, Xin Choi, Wonsik Zhang, Chen Kim, Jisoo Baboli, Mohadeseh A Park, Jeongpil Bong, Jihye Lee, In-Kyu Gong, Jiarui Solomon, Mikael Jae Ha Ryu Mohseni, Parsian K Li, Xiuling Gong, Shaoqin Wang, Xudong Ma, Zhenqiang |
description | Semiconductor heterostructure is a critical building block for modern semiconductor devices. However, forming semiconductor heterostructures of lattice-mismatch has been a great challenge for several decades. Epitaxial growth is infeasible to form abrupt heterostructures with large lattice-mismatch while mechanical-thermal bonding results in a high density of interface defects and therefore severely limits device applications. Here we show an ultra-thin oxide-interfaced approach for the successful formation of lattice-mismatched semiconductor heterostructures. Following the depiction of a theory on the role of interface oxide in forming the heterostructures, we describe experimental demonstrations of Ge/Si (diamond lattices), Si/GaAs (zinc blende lattice), GaAs/GaN (hexagon lattice), and Si/GaN heterostructures. Extraordinary electrical performances in terms of ideality factor, current on/off ratio, and reverse breakdown voltage are measured from p-n diodes fabricated from the four types of heterostructures, significantly outperforming diodes derived from other methods. Our demonstrations indicate the versatility of the ultra-thin-oxide-interface approach in forming lattice-mismatched heterostructures, open up a much larger possibility for material combinations for heterostructures, and pave the way toward broader applications in electronic and optoelectronic realms. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2160977002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2160977002</sourcerecordid><originalsourceid>FETCH-proquest_journals_21609770023</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9EksKclMTtXNzSzOTSxJzkhNUShOzc1Mzs9LKU0uyS9SyEgtSS3KLy4pAnJLi1KLeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjQzMDS3BxonTFxqgAwnDS2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2160977002</pqid></control><display><type>article</type><title>Lattice-mismatched semiconductor heterostructures</title><source>Publicly Available Content Database</source><creator>Liu, Dong ; Cho, Sang June ; Jung-Hun Seo ; Kim, Kwangeun ; Kim, Munho ; Shi, Jian ; Yin, Xin ; Choi, Wonsik ; Zhang, Chen ; Kim, Jisoo ; Baboli, Mohadeseh A ; Park, Jeongpil ; Bong, Jihye ; Lee, In-Kyu ; Gong, Jiarui ; Solomon, Mikael ; Jae Ha Ryu ; Mohseni, Parsian K ; Li, Xiuling ; Gong, Shaoqin ; Wang, Xudong ; Ma, Zhenqiang</creator><creatorcontrib>Liu, Dong ; Cho, Sang June ; Jung-Hun Seo ; Kim, Kwangeun ; Kim, Munho ; Shi, Jian ; Yin, Xin ; Choi, Wonsik ; Zhang, Chen ; Kim, Jisoo ; Baboli, Mohadeseh A ; Park, Jeongpil ; Bong, Jihye ; Lee, In-Kyu ; Gong, Jiarui ; Solomon, Mikael ; Jae Ha Ryu ; Mohseni, Parsian K ; Li, Xiuling ; Gong, Shaoqin ; Wang, Xudong ; Ma, Zhenqiang</creatorcontrib><description>Semiconductor heterostructure is a critical building block for modern semiconductor devices. However, forming semiconductor heterostructures of lattice-mismatch has been a great challenge for several decades. Epitaxial growth is infeasible to form abrupt heterostructures with large lattice-mismatch while mechanical-thermal bonding results in a high density of interface defects and therefore severely limits device applications. Here we show an ultra-thin oxide-interfaced approach for the successful formation of lattice-mismatched semiconductor heterostructures. Following the depiction of a theory on the role of interface oxide in forming the heterostructures, we describe experimental demonstrations of Ge/Si (diamond lattices), Si/GaAs (zinc blende lattice), GaAs/GaN (hexagon lattice), and Si/GaN heterostructures. Extraordinary electrical performances in terms of ideality factor, current on/off ratio, and reverse breakdown voltage are measured from p-n diodes fabricated from the four types of heterostructures, significantly outperforming diodes derived from other methods. Our demonstrations indicate the versatility of the ultra-thin-oxide-interface approach in forming lattice-mismatched heterostructures, open up a much larger possibility for material combinations for heterostructures, and pave the way toward broader applications in electronic and optoelectronic realms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diamonds ; Epitaxial growth ; Gallium nitrides ; Germanium ; Heterostructures ; Lattices ; Optoelectronics ; Semiconductor devices ; Silicon ; Zincblende</subject><ispartof>arXiv.org, 2018-12</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2160977002?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Cho, Sang June</creatorcontrib><creatorcontrib>Jung-Hun Seo</creatorcontrib><creatorcontrib>Kim, Kwangeun</creatorcontrib><creatorcontrib>Kim, Munho</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Yin, Xin</creatorcontrib><creatorcontrib>Choi, Wonsik</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Kim, Jisoo</creatorcontrib><creatorcontrib>Baboli, Mohadeseh A</creatorcontrib><creatorcontrib>Park, Jeongpil</creatorcontrib><creatorcontrib>Bong, Jihye</creatorcontrib><creatorcontrib>Lee, In-Kyu</creatorcontrib><creatorcontrib>Gong, Jiarui</creatorcontrib><creatorcontrib>Solomon, Mikael</creatorcontrib><creatorcontrib>Jae Ha Ryu</creatorcontrib><creatorcontrib>Mohseni, Parsian K</creatorcontrib><creatorcontrib>Li, Xiuling</creatorcontrib><creatorcontrib>Gong, Shaoqin</creatorcontrib><creatorcontrib>Wang, Xudong</creatorcontrib><creatorcontrib>Ma, Zhenqiang</creatorcontrib><title>Lattice-mismatched semiconductor heterostructures</title><title>arXiv.org</title><description>Semiconductor heterostructure is a critical building block for modern semiconductor devices. However, forming semiconductor heterostructures of lattice-mismatch has been a great challenge for several decades. Epitaxial growth is infeasible to form abrupt heterostructures with large lattice-mismatch while mechanical-thermal bonding results in a high density of interface defects and therefore severely limits device applications. Here we show an ultra-thin oxide-interfaced approach for the successful formation of lattice-mismatched semiconductor heterostructures. Following the depiction of a theory on the role of interface oxide in forming the heterostructures, we describe experimental demonstrations of Ge/Si (diamond lattices), Si/GaAs (zinc blende lattice), GaAs/GaN (hexagon lattice), and Si/GaN heterostructures. Extraordinary electrical performances in terms of ideality factor, current on/off ratio, and reverse breakdown voltage are measured from p-n diodes fabricated from the four types of heterostructures, significantly outperforming diodes derived from other methods. Our demonstrations indicate the versatility of the ultra-thin-oxide-interface approach in forming lattice-mismatched heterostructures, open up a much larger possibility for material combinations for heterostructures, and pave the way toward broader applications in electronic and optoelectronic realms.</description><subject>Diamonds</subject><subject>Epitaxial growth</subject><subject>Gallium nitrides</subject><subject>Germanium</subject><subject>Heterostructures</subject><subject>Lattices</subject><subject>Optoelectronics</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Zincblende</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9EksKclMTtXNzSzOTSxJzkhNUShOzc1Mzs9LKU0uyS9SyEgtSS3KLy4pAnJLi1KLeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjQzMDS3BxonTFxqgAwnDS2</recordid><startdate>20181226</startdate><enddate>20181226</enddate><creator>Liu, Dong</creator><creator>Cho, Sang June</creator><creator>Jung-Hun Seo</creator><creator>Kim, Kwangeun</creator><creator>Kim, Munho</creator><creator>Shi, Jian</creator><creator>Yin, Xin</creator><creator>Choi, Wonsik</creator><creator>Zhang, Chen</creator><creator>Kim, Jisoo</creator><creator>Baboli, Mohadeseh A</creator><creator>Park, Jeongpil</creator><creator>Bong, Jihye</creator><creator>Lee, In-Kyu</creator><creator>Gong, Jiarui</creator><creator>Solomon, Mikael</creator><creator>Jae Ha Ryu</creator><creator>Mohseni, Parsian K</creator><creator>Li, Xiuling</creator><creator>Gong, Shaoqin</creator><creator>Wang, Xudong</creator><creator>Ma, Zhenqiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181226</creationdate><title>Lattice-mismatched semiconductor heterostructures</title><author>Liu, Dong ; Cho, Sang June ; Jung-Hun Seo ; Kim, Kwangeun ; Kim, Munho ; Shi, Jian ; Yin, Xin ; Choi, Wonsik ; Zhang, Chen ; Kim, Jisoo ; Baboli, Mohadeseh A ; Park, Jeongpil ; Bong, Jihye ; Lee, In-Kyu ; Gong, Jiarui ; Solomon, Mikael ; Jae Ha Ryu ; Mohseni, Parsian K ; Li, Xiuling ; Gong, Shaoqin ; Wang, Xudong ; Ma, Zhenqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21609770023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Diamonds</topic><topic>Epitaxial growth</topic><topic>Gallium nitrides</topic><topic>Germanium</topic><topic>Heterostructures</topic><topic>Lattices</topic><topic>Optoelectronics</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Zincblende</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Cho, Sang June</creatorcontrib><creatorcontrib>Jung-Hun Seo</creatorcontrib><creatorcontrib>Kim, Kwangeun</creatorcontrib><creatorcontrib>Kim, Munho</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Yin, Xin</creatorcontrib><creatorcontrib>Choi, Wonsik</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Kim, Jisoo</creatorcontrib><creatorcontrib>Baboli, Mohadeseh A</creatorcontrib><creatorcontrib>Park, Jeongpil</creatorcontrib><creatorcontrib>Bong, Jihye</creatorcontrib><creatorcontrib>Lee, In-Kyu</creatorcontrib><creatorcontrib>Gong, Jiarui</creatorcontrib><creatorcontrib>Solomon, Mikael</creatorcontrib><creatorcontrib>Jae Ha Ryu</creatorcontrib><creatorcontrib>Mohseni, Parsian K</creatorcontrib><creatorcontrib>Li, Xiuling</creatorcontrib><creatorcontrib>Gong, Shaoqin</creatorcontrib><creatorcontrib>Wang, Xudong</creatorcontrib><creatorcontrib>Ma, Zhenqiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dong</au><au>Cho, Sang June</au><au>Jung-Hun Seo</au><au>Kim, Kwangeun</au><au>Kim, Munho</au><au>Shi, Jian</au><au>Yin, Xin</au><au>Choi, Wonsik</au><au>Zhang, Chen</au><au>Kim, Jisoo</au><au>Baboli, Mohadeseh A</au><au>Park, Jeongpil</au><au>Bong, Jihye</au><au>Lee, In-Kyu</au><au>Gong, Jiarui</au><au>Solomon, Mikael</au><au>Jae Ha Ryu</au><au>Mohseni, Parsian K</au><au>Li, Xiuling</au><au>Gong, Shaoqin</au><au>Wang, Xudong</au><au>Ma, Zhenqiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Lattice-mismatched semiconductor heterostructures</atitle><jtitle>arXiv.org</jtitle><date>2018-12-26</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Semiconductor heterostructure is a critical building block for modern semiconductor devices. However, forming semiconductor heterostructures of lattice-mismatch has been a great challenge for several decades. Epitaxial growth is infeasible to form abrupt heterostructures with large lattice-mismatch while mechanical-thermal bonding results in a high density of interface defects and therefore severely limits device applications. Here we show an ultra-thin oxide-interfaced approach for the successful formation of lattice-mismatched semiconductor heterostructures. Following the depiction of a theory on the role of interface oxide in forming the heterostructures, we describe experimental demonstrations of Ge/Si (diamond lattices), Si/GaAs (zinc blende lattice), GaAs/GaN (hexagon lattice), and Si/GaN heterostructures. Extraordinary electrical performances in terms of ideality factor, current on/off ratio, and reverse breakdown voltage are measured from p-n diodes fabricated from the four types of heterostructures, significantly outperforming diodes derived from other methods. Our demonstrations indicate the versatility of the ultra-thin-oxide-interface approach in forming lattice-mismatched heterostructures, open up a much larger possibility for material combinations for heterostructures, and pave the way toward broader applications in electronic and optoelectronic realms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2160977002 |
source | Publicly Available Content Database |
subjects | Diamonds Epitaxial growth Gallium nitrides Germanium Heterostructures Lattices Optoelectronics Semiconductor devices Silicon Zincblende |
title | Lattice-mismatched semiconductor heterostructures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Lattice-mismatched%20semiconductor%20heterostructures&rft.jtitle=arXiv.org&rft.au=Liu,%20Dong&rft.date=2018-12-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2160977002%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21609770023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2160977002&rft_id=info:pmid/&rfr_iscdi=true |