Loading…
Nested antichains for WS1S
We propose a novel approach for coping with alternating quantification as the main source of nonelementary complexity of deciding WS1S formulae. Our approach is applicable within the state-of-the-art automata-based WS1S decision procedure implemented e.g. in Mona . The way in which the standard deci...
Saved in:
Published in: | Acta informatica 2019-04, Vol.56 (3), p.205-228 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a novel approach for coping with alternating quantification as the main source of nonelementary complexity of deciding WS1S formulae. Our approach is applicable within the state-of-the-art automata-based WS1S decision procedure implemented e.g. in
Mona
. The way in which the standard decision procedure processes quantifiers involves determinization, with its worst case exponential complexity, for every quantifier alternation in the prefix of a formula. Our algorithm avoids building the deterministic automata—instead, it constructs only those of their states needed for (dis)proving validity of the formula. It uses a symbolic representation of the states, which have a deeply nested structure stemming from the repeated implicit subset construction, and prunes the search space by a nested subsumption relation, a generalization of the one used by the so-called antichain algorithms for handling nondeterministic automata. We have obtained encouraging experimental results, in some cases outperforming
Mona
, and some of the other recently proposed approaches, by several orders of magnitude. |
---|---|
ISSN: | 0001-5903 1432-0525 |
DOI: | 10.1007/s00236-018-0331-z |