Loading…

Investigation on Al Doped Zno Thin Films and its N-Alzno/P-Si Junction Diodes Via Dip Coating and JNSP Techniques

From this investigation, we find out that the dip coating and jet nebulizer spray pyrolysis (JNSP) techniques are the suitable to fabricate aluminum doped zinc oxide (AlZnO) thin films and the P-N junction diode of n-AlZnO/p-Si at 450°C. Several characterization techniques are used to measure the co...

Full description

Saved in:
Bibliographic Details
Published in:Oriental journal of chemistry 2018-01, Vol.34 (5), p.2590-2596
Main Authors: Kalidass, S., Thirunavukkarasu, P., Balaji, M., Chandrasekaran, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:From this investigation, we find out that the dip coating and jet nebulizer spray pyrolysis (JNSP) techniques are the suitable to fabricate aluminum doped zinc oxide (AlZnO) thin films and the P-N junction diode of n-AlZnO/p-Si at 450°C. Several characterization techniques are used to measure the consequences of Al doping (0, 0.5, 1.0, 1.5, 2.0 and 2.5 wt.%) on structural, optical, electrical and diode properties of ZnO. We recorded that the films were polycrystalline with a hexagonal structure of ZnO by the X-ray diffraction (XRD) analysis. The disparities of the sub-micro sized rod-like structures are observed from the scanning electron microscope (SEM) images. The energy dispersive X-ray spectroscopy (EDX) analysis proved that the elements of Al, Zn and O were presented in the film. The absorbance and band gap energy (Eg) values were ascertained from the ultraviolet visible (UV-vis) analysis. By the current-voltage (I-V) characterization, the maximum conductivity value is detected for 1.5 wt.% of Al doped ZnO film. The I-V measurement for finding the diode parameters of ideality factor (n) and barrier height (Fb) in dark and under light was taken.
ISSN:0970-020X
2231-5039
DOI:10.13005/ojc/340548