Loadingā¦
Peptidyl Linkers for Protein Heterodimerization Catalyzed by Microbial Transglutaminase
Specific peptidyl linkers that result in the heterodimerization of functional proteins, which is catalyzed by microbial transglutaminase from Streptomyces mobaraensis (MTG), were generated based on a ribonuclease S-peptide using site-directed mutagenesis. The peptidyl linkers designated as Lys-tag a...
Saved in:
Published in: | Bioconjugate chemistry 2004-05, Vol.15 (3), p.491-497 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Specific peptidyl linkers that result in the heterodimerization of functional proteins, which is catalyzed by microbial transglutaminase from Streptomyces mobaraensis (MTG), were generated based on a ribonuclease S-peptide using site-directed mutagenesis. The peptidyl linkers designated as Lys-tag and Gln-tag were designed to possess sole reactive Lys or Gln residue that was amenable for selective Lys-Gln cross-linkage of different proteins. Green fluorescent protein variants, ECFP and EYFP, were employed as model proteins, and those Lys- and Gln-tags were fused to the N-termini of ECFP and EYFP, respectively. As a result, we succeeded in solely obtaining the ECFP-EYFP heterodimer without forming multiply cross-linked byproducts. It was found that the reactivity of peptidyl linkers varied according to the type of amino acid to be replaced. Peptidyl linkers with a basic amino acid (Arg) exhibited the highest reactivity in the cross-linking reaction, suggesting the cationic residue substrate preference of MTG. Kinetic analysis utilizing fluorescent resonance energy transfer (FRET), that is only observed upon the heterodimeric ECFP-EYFP conjugation, revealed that the amino acid replacement contributed to the acceleration of cross-linking reactions by increasing catalytic turnover (k cat), rather than substrate binding affinity (K m). Finally, using a ribonuclease S-protein, the manipulation of enzymatic protein cross-linking based on specific S-peptide:S-protein interactions was explored. Since newly designed Lys- and Gln-tags retained binding affinities to the S-protein, the heterodimerization was perfectly restrained by wrapping them with the S-protein. The results suggest the possibility of limited protein conjugation by tuning steric hindrance against the MTG. Tailoring enzymatic posttranslational modifications with either engineering peptidyl substrates or by taking specific peptideāprotein interactions into consideration may facilitate the development of a new sequential protein conjugation method for the preparation of multifunctional protein. |
---|---|
ISSN: | 1043-1802 1520-4812 |
DOI: | 10.1021/bc034209o |