Loading…
Customer-Side SCADA-Assisted Large Battery Operation Optimization for Distribution Feeder Peak Load Shaving
Built upon real-world supervisory control and data acquisition (SCADA) and other measurements of a featured utility-scale testbed, this paper addresses the participation of customer side battery energy storage in providing peak load shaving at a 12.47 kV distribution feeder. A stochastic optimizatio...
Saved in:
Published in: | IEEE transactions on smart grid 2019-01, Vol.10 (1), p.992-1004 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Built upon real-world supervisory control and data acquisition (SCADA) and other measurements of a featured utility-scale testbed, this paper addresses the participation of customer side battery energy storage in providing peak load shaving at a 12.47 kV distribution feeder. A stochastic optimization-based battery operation framework is developed that enables feeder load peak shaving under offline (day-ahead) as well as online (close-to-real-time) control settings. Both designs work through establishing a secured communications line to the utility's feeder-level SCADA system. Multiple field experiments are conducted, including a full day test with complete control of a 1 MWh/200 kW battery system, as well as various numerical assessments based upon one year of real feeder data. |
---|---|
ISSN: | 1949-3053 1949-3061 |
DOI: | 10.1109/TSG.2017.2757007 |