Loading…
Ensemble forecasts of air quality in eastern China – Part 1: Model description and implementation of the MarcoPolo–Panda prediction system, version 1
An operational multi-model forecasting system for air quality including nine different chemical transport models has been developed and provides daily forecasts of ozone, nitrogen oxides, and particulate matter for the 37 largest urban areas of China (population higher than 3 million in 2010). These...
Saved in:
Published in: | Geoscientific Model Development 2019-01, Vol.12 (1), p.33-67 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-2057fbee96d867fe46dd9b48d3367f7c63b916aedbc94603579a061d4e5b9f0c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-2057fbee96d867fe46dd9b48d3367f7c63b916aedbc94603579a061d4e5b9f0c3 |
container_end_page | 67 |
container_issue | 1 |
container_start_page | 33 |
container_title | Geoscientific Model Development |
container_volume | 12 |
creator | Brasseur, Guy P Xie, Ying Petersen, Anna Katinka Bouarar, Idir Flemming, Johannes Gauss, Michael Jiang, Fei Kouznetsov, Rostislav Kranenburg, Richard Mijling, Bas Peuch, Vincent-Henri Pommier, Matthieu Segers, Arjo Sofiev, Mikhail Timmermans, Renske van der A, Ronald Walters, Stacy Xu, Jianming Zhou, Guangqiang |
description | An operational multi-model forecasting system for air quality including nine
different chemical transport models has been developed and provides daily
forecasts of ozone, nitrogen oxides, and particulate matter for the 37
largest urban areas of China (population higher than 3 million in 2010).
These individual forecasts as well as the mean and median concentrations for
the next 3 days are displayed on a publicly accessible website
(http://www.marcopolo-panda.eu, last access: 7 December 2018). The paper describes the forecasting system and shows some selected
illustrative examples of air quality predictions. It presents an
intercomparison of the different forecasts performed during a given period of
time (1–15 March 2017) and highlights recurrent differences between the
model output as well as systematic biases that appear in the median
concentration values. Pathways to improve the forecasts by the multi-model
system are suggested. |
doi_str_mv | 10.5194/gmd-12-33-2019 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2162727439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A568199303</galeid><doaj_id>oai_doaj_org_article_4d70435b665b43c5a7cb72326a70645b</doaj_id><sourcerecordid>A568199303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2057fbee96d867fe46dd9b48d3367f7c63b916aedbc94603579a061d4e5b9f0c3</originalsourceid><addsrcrecordid>eNptks2OFCEUhStGE8fRrWsSVybWCAUFjbtJZ9ROZmLHnzXh51YPnSqoAdrYO9_Bla_nk0j3GHWSCQu4J-d-cMJtmucEn_VEstebybWkayltO0zkg-aESElayTF9-N_5cfMk5y3GXAouTpqfFyHDZEZAQ0xgdS4ZxQFpn9DNTo--7JEPCKoOKaDltQ8a_fr-A611Koi8QVfRwYgcZJv8XHwMSAeH_DSPMEEo-ihVYLkGdKWTjes4xgpYV5tGcwLn7dGT9_WK6RX6CikfavK0eTToMcOzP_tp8-Xtxefl-_byw7vV8vyytUywUrP2YjAAkrsFFwMw7pw0bOEoraWwnBpJuAZnrGQ1fy-kxpw4Br2RA7b0tFndcl3UWzUnP-m0V1F7dRRi2qia1dsRFHMCM9obznvDqO21sEZ0tONaYM56U1kvbllzijc7yEVt4y6F-nzVEd6JTjAq_7k2ukJ9GGJJ2k4-W3Xe80X9KoppdZ3d46rLweRtDDD4qt9peHmnoXoKfCsbvctZrT59vBduU8w5wfA3OMHqME2qTpMinaJUHaaJ_gb0ZL3L</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162727439</pqid></control><display><type>article</type><title>Ensemble forecasts of air quality in eastern China – Part 1: Model description and implementation of the MarcoPolo–Panda prediction system, version 1</title><source>Publicly Available Content Database</source><creator>Brasseur, Guy P ; Xie, Ying ; Petersen, Anna Katinka ; Bouarar, Idir ; Flemming, Johannes ; Gauss, Michael ; Jiang, Fei ; Kouznetsov, Rostislav ; Kranenburg, Richard ; Mijling, Bas ; Peuch, Vincent-Henri ; Pommier, Matthieu ; Segers, Arjo ; Sofiev, Mikhail ; Timmermans, Renske ; van der A, Ronald ; Walters, Stacy ; Xu, Jianming ; Zhou, Guangqiang</creator><creatorcontrib>Brasseur, Guy P ; Xie, Ying ; Petersen, Anna Katinka ; Bouarar, Idir ; Flemming, Johannes ; Gauss, Michael ; Jiang, Fei ; Kouznetsov, Rostislav ; Kranenburg, Richard ; Mijling, Bas ; Peuch, Vincent-Henri ; Pommier, Matthieu ; Segers, Arjo ; Sofiev, Mikhail ; Timmermans, Renske ; van der A, Ronald ; Walters, Stacy ; Xu, Jianming ; Zhou, Guangqiang</creatorcontrib><description>An operational multi-model forecasting system for air quality including nine
different chemical transport models has been developed and provides daily
forecasts of ozone, nitrogen oxides, and particulate matter for the 37
largest urban areas of China (population higher than 3 million in 2010).
These individual forecasts as well as the mean and median concentrations for
the next 3 days are displayed on a publicly accessible website
(http://www.marcopolo-panda.eu, last access: 7 December 2018). The paper describes the forecasting system and shows some selected
illustrative examples of air quality predictions. It presents an
intercomparison of the different forecasts performed during a given period of
time (1–15 March 2017) and highlights recurrent differences between the
model output as well as systematic biases that appear in the median
concentration values. Pathways to improve the forecasts by the multi-model
system are suggested.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-959X</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>DOI: 10.5194/gmd-12-33-2019</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Air ; Air pollution ; Air quality ; Airborne particulates ; Algorithms ; Analysis ; Boundary conditions ; Chemical transport ; Chronic obstructive pulmonary disease ; Daily forecasts ; Documentation ; Emissions ; Ensemble forecasting ; Forecasting ; Forecasts and trends ; Intercomparison ; Nitrogen oxides ; Organic chemistry ; Oxides ; Ozone ; Partial differential equations ; Particulate matter ; Photochemicals ; Pollutants ; Suspended particulate matter ; Urban areas ; Weather ; Weather forecasting ; Websites</subject><ispartof>Geoscientific Model Development, 2019-01, Vol.12 (1), p.33-67</ispartof><rights>COPYRIGHT 2019 Copernicus GmbH</rights><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-2057fbee96d867fe46dd9b48d3367f7c63b916aedbc94603579a061d4e5b9f0c3</citedby><cites>FETCH-LOGICAL-c474t-2057fbee96d867fe46dd9b48d3367f7c63b916aedbc94603579a061d4e5b9f0c3</cites><orcidid>0000-0002-0077-5338 ; 0000-0003-4880-5329 ; 0000-0001-5140-0037 ; 0000-0001-6016-4363 ; 0000-0003-1396-0505 ; 0000-0003-1744-7565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2162727439/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2162727439?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25735,27906,27907,36994,44572,74876</link.rule.ids></links><search><creatorcontrib>Brasseur, Guy P</creatorcontrib><creatorcontrib>Xie, Ying</creatorcontrib><creatorcontrib>Petersen, Anna Katinka</creatorcontrib><creatorcontrib>Bouarar, Idir</creatorcontrib><creatorcontrib>Flemming, Johannes</creatorcontrib><creatorcontrib>Gauss, Michael</creatorcontrib><creatorcontrib>Jiang, Fei</creatorcontrib><creatorcontrib>Kouznetsov, Rostislav</creatorcontrib><creatorcontrib>Kranenburg, Richard</creatorcontrib><creatorcontrib>Mijling, Bas</creatorcontrib><creatorcontrib>Peuch, Vincent-Henri</creatorcontrib><creatorcontrib>Pommier, Matthieu</creatorcontrib><creatorcontrib>Segers, Arjo</creatorcontrib><creatorcontrib>Sofiev, Mikhail</creatorcontrib><creatorcontrib>Timmermans, Renske</creatorcontrib><creatorcontrib>van der A, Ronald</creatorcontrib><creatorcontrib>Walters, Stacy</creatorcontrib><creatorcontrib>Xu, Jianming</creatorcontrib><creatorcontrib>Zhou, Guangqiang</creatorcontrib><title>Ensemble forecasts of air quality in eastern China – Part 1: Model description and implementation of the MarcoPolo–Panda prediction system, version 1</title><title>Geoscientific Model Development</title><description>An operational multi-model forecasting system for air quality including nine
different chemical transport models has been developed and provides daily
forecasts of ozone, nitrogen oxides, and particulate matter for the 37
largest urban areas of China (population higher than 3 million in 2010).
These individual forecasts as well as the mean and median concentrations for
the next 3 days are displayed on a publicly accessible website
(http://www.marcopolo-panda.eu, last access: 7 December 2018). The paper describes the forecasting system and shows some selected
illustrative examples of air quality predictions. It presents an
intercomparison of the different forecasts performed during a given period of
time (1–15 March 2017) and highlights recurrent differences between the
model output as well as systematic biases that appear in the median
concentration values. Pathways to improve the forecasts by the multi-model
system are suggested.</description><subject>Air</subject><subject>Air pollution</subject><subject>Air quality</subject><subject>Airborne particulates</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Chemical transport</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Daily forecasts</subject><subject>Documentation</subject><subject>Emissions</subject><subject>Ensemble forecasting</subject><subject>Forecasting</subject><subject>Forecasts and trends</subject><subject>Intercomparison</subject><subject>Nitrogen oxides</subject><subject>Organic chemistry</subject><subject>Oxides</subject><subject>Ozone</subject><subject>Partial differential equations</subject><subject>Particulate matter</subject><subject>Photochemicals</subject><subject>Pollutants</subject><subject>Suspended particulate matter</subject><subject>Urban areas</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Websites</subject><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks2OFCEUhStGE8fRrWsSVybWCAUFjbtJZ9ROZmLHnzXh51YPnSqoAdrYO9_Bla_nk0j3GHWSCQu4J-d-cMJtmucEn_VEstebybWkayltO0zkg-aESElayTF9-N_5cfMk5y3GXAouTpqfFyHDZEZAQ0xgdS4ZxQFpn9DNTo--7JEPCKoOKaDltQ8a_fr-A611Koi8QVfRwYgcZJv8XHwMSAeH_DSPMEEo-ihVYLkGdKWTjes4xgpYV5tGcwLn7dGT9_WK6RX6CikfavK0eTToMcOzP_tp8-Xtxefl-_byw7vV8vyytUywUrP2YjAAkrsFFwMw7pw0bOEoraWwnBpJuAZnrGQ1fy-kxpw4Br2RA7b0tFndcl3UWzUnP-m0V1F7dRRi2qia1dsRFHMCM9obznvDqO21sEZ0tONaYM56U1kvbllzijc7yEVt4y6F-nzVEd6JTjAq_7k2ukJ9GGJJ2k4-W3Xe80X9KoppdZ3d46rLweRtDDD4qt9peHmnoXoKfCsbvctZrT59vBduU8w5wfA3OMHqME2qTpMinaJUHaaJ_gb0ZL3L</recordid><startdate>20190103</startdate><enddate>20190103</enddate><creator>Brasseur, Guy P</creator><creator>Xie, Ying</creator><creator>Petersen, Anna Katinka</creator><creator>Bouarar, Idir</creator><creator>Flemming, Johannes</creator><creator>Gauss, Michael</creator><creator>Jiang, Fei</creator><creator>Kouznetsov, Rostislav</creator><creator>Kranenburg, Richard</creator><creator>Mijling, Bas</creator><creator>Peuch, Vincent-Henri</creator><creator>Pommier, Matthieu</creator><creator>Segers, Arjo</creator><creator>Sofiev, Mikhail</creator><creator>Timmermans, Renske</creator><creator>van der A, Ronald</creator><creator>Walters, Stacy</creator><creator>Xu, Jianming</creator><creator>Zhou, Guangqiang</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0077-5338</orcidid><orcidid>https://orcid.org/0000-0003-4880-5329</orcidid><orcidid>https://orcid.org/0000-0001-5140-0037</orcidid><orcidid>https://orcid.org/0000-0001-6016-4363</orcidid><orcidid>https://orcid.org/0000-0003-1396-0505</orcidid><orcidid>https://orcid.org/0000-0003-1744-7565</orcidid></search><sort><creationdate>20190103</creationdate><title>Ensemble forecasts of air quality in eastern China – Part 1: Model description and implementation of the MarcoPolo–Panda prediction system, version 1</title><author>Brasseur, Guy P ; Xie, Ying ; Petersen, Anna Katinka ; Bouarar, Idir ; Flemming, Johannes ; Gauss, Michael ; Jiang, Fei ; Kouznetsov, Rostislav ; Kranenburg, Richard ; Mijling, Bas ; Peuch, Vincent-Henri ; Pommier, Matthieu ; Segers, Arjo ; Sofiev, Mikhail ; Timmermans, Renske ; van der A, Ronald ; Walters, Stacy ; Xu, Jianming ; Zhou, Guangqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2057fbee96d867fe46dd9b48d3367f7c63b916aedbc94603579a061d4e5b9f0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air</topic><topic>Air pollution</topic><topic>Air quality</topic><topic>Airborne particulates</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Chemical transport</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Daily forecasts</topic><topic>Documentation</topic><topic>Emissions</topic><topic>Ensemble forecasting</topic><topic>Forecasting</topic><topic>Forecasts and trends</topic><topic>Intercomparison</topic><topic>Nitrogen oxides</topic><topic>Organic chemistry</topic><topic>Oxides</topic><topic>Ozone</topic><topic>Partial differential equations</topic><topic>Particulate matter</topic><topic>Photochemicals</topic><topic>Pollutants</topic><topic>Suspended particulate matter</topic><topic>Urban areas</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brasseur, Guy P</creatorcontrib><creatorcontrib>Xie, Ying</creatorcontrib><creatorcontrib>Petersen, Anna Katinka</creatorcontrib><creatorcontrib>Bouarar, Idir</creatorcontrib><creatorcontrib>Flemming, Johannes</creatorcontrib><creatorcontrib>Gauss, Michael</creatorcontrib><creatorcontrib>Jiang, Fei</creatorcontrib><creatorcontrib>Kouznetsov, Rostislav</creatorcontrib><creatorcontrib>Kranenburg, Richard</creatorcontrib><creatorcontrib>Mijling, Bas</creatorcontrib><creatorcontrib>Peuch, Vincent-Henri</creatorcontrib><creatorcontrib>Pommier, Matthieu</creatorcontrib><creatorcontrib>Segers, Arjo</creatorcontrib><creatorcontrib>Sofiev, Mikhail</creatorcontrib><creatorcontrib>Timmermans, Renske</creatorcontrib><creatorcontrib>van der A, Ronald</creatorcontrib><creatorcontrib>Walters, Stacy</creatorcontrib><creatorcontrib>Xu, Jianming</creatorcontrib><creatorcontrib>Zhou, Guangqiang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brasseur, Guy P</au><au>Xie, Ying</au><au>Petersen, Anna Katinka</au><au>Bouarar, Idir</au><au>Flemming, Johannes</au><au>Gauss, Michael</au><au>Jiang, Fei</au><au>Kouznetsov, Rostislav</au><au>Kranenburg, Richard</au><au>Mijling, Bas</au><au>Peuch, Vincent-Henri</au><au>Pommier, Matthieu</au><au>Segers, Arjo</au><au>Sofiev, Mikhail</au><au>Timmermans, Renske</au><au>van der A, Ronald</au><au>Walters, Stacy</au><au>Xu, Jianming</au><au>Zhou, Guangqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble forecasts of air quality in eastern China – Part 1: Model description and implementation of the MarcoPolo–Panda prediction system, version 1</atitle><jtitle>Geoscientific Model Development</jtitle><date>2019-01-03</date><risdate>2019</risdate><volume>12</volume><issue>1</issue><spage>33</spage><epage>67</epage><pages>33-67</pages><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><abstract>An operational multi-model forecasting system for air quality including nine
different chemical transport models has been developed and provides daily
forecasts of ozone, nitrogen oxides, and particulate matter for the 37
largest urban areas of China (population higher than 3 million in 2010).
These individual forecasts as well as the mean and median concentrations for
the next 3 days are displayed on a publicly accessible website
(http://www.marcopolo-panda.eu, last access: 7 December 2018). The paper describes the forecasting system and shows some selected
illustrative examples of air quality predictions. It presents an
intercomparison of the different forecasts performed during a given period of
time (1–15 March 2017) and highlights recurrent differences between the
model output as well as systematic biases that appear in the median
concentration values. Pathways to improve the forecasts by the multi-model
system are suggested.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-12-33-2019</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-0077-5338</orcidid><orcidid>https://orcid.org/0000-0003-4880-5329</orcidid><orcidid>https://orcid.org/0000-0001-5140-0037</orcidid><orcidid>https://orcid.org/0000-0001-6016-4363</orcidid><orcidid>https://orcid.org/0000-0003-1396-0505</orcidid><orcidid>https://orcid.org/0000-0003-1744-7565</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1991-9603 |
ispartof | Geoscientific Model Development, 2019-01, Vol.12 (1), p.33-67 |
issn | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X |
language | eng |
recordid | cdi_proquest_journals_2162727439 |
source | Publicly Available Content Database |
subjects | Air Air pollution Air quality Airborne particulates Algorithms Analysis Boundary conditions Chemical transport Chronic obstructive pulmonary disease Daily forecasts Documentation Emissions Ensemble forecasting Forecasting Forecasts and trends Intercomparison Nitrogen oxides Organic chemistry Oxides Ozone Partial differential equations Particulate matter Photochemicals Pollutants Suspended particulate matter Urban areas Weather Weather forecasting Websites |
title | Ensemble forecasts of air quality in eastern China – Part 1: Model description and implementation of the MarcoPolo–Panda prediction system, version 1 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20forecasts%20of%20air%20quality%20in%20eastern%20China%20%E2%80%93%20Part%201:%20Model%20description%20and%20implementation%20of%20the%20MarcoPolo%E2%80%93Panda%20prediction%20system,%20version%201&rft.jtitle=Geoscientific%20Model%20Development&rft.au=Brasseur,%20Guy%20P&rft.date=2019-01-03&rft.volume=12&rft.issue=1&rft.spage=33&rft.epage=67&rft.pages=33-67&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-12-33-2019&rft_dat=%3Cgale_doaj_%3EA568199303%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-2057fbee96d867fe46dd9b48d3367f7c63b916aedbc94603579a061d4e5b9f0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2162727439&rft_id=info:pmid/&rft_galeid=A568199303&rfr_iscdi=true |