Loading…
Copper chalcogenide thermoelectric materials
Cu-based chalcogenides have received increasing attention as promising thermoelectric materials due to their high efficiency, tunable transport properties, high elemental abundance and low toxicity. In this review, we summarize the recent research progress on this large family compounds covering dia...
Saved in:
Published in: | Science China materials 2019, Vol.62 (1), p.8-24 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-a0638161cf98684f704b5dd0845ea6b44803ac2f6ac13307e32a605b0e2083473 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-a0638161cf98684f704b5dd0845ea6b44803ac2f6ac13307e32a605b0e2083473 |
container_end_page | 24 |
container_issue | 1 |
container_start_page | 8 |
container_title | Science China materials |
container_volume | 62 |
creator | Wei, Tian-Ran Qin, Yuting Deng, Tingting Song, Qingfeng Jiang, Binbin Liu, Ruiheng Qiu, Pengfei Shi, Xun Chen, Lidong |
description | Cu-based chalcogenides have received increasing attention as promising thermoelectric materials due to their high efficiency, tunable transport properties, high elemental abundance and low toxicity. In this review, we summarize the recent research progress on this large family compounds covering diamond-like chalcogenides and liquid-like Cu
2
X (X=S, Se, Te) binary compounds as well as their multinary derivatives. These materials have the general features of two sublattices to decouple electron and phonon transport properties. On the one hand, the complex crystal structure and the disordered or even liquid-like sublattice bring about an intrinsically low lattice thermal conductivity. On the other hand, the rigid sublattice constitutes the charge-transport network, maintaining a decent electrical performance. For specific material systems, we demonstrate their unique structural features and outline the structure-performance correlation. Various design strategies including doping, alloying, band engineering and nanostructure architecture, covering nearly all the material scale, are also presented. Finally, the potential of the application of Cu-based chalcogenides as high-performance thermoelectric materials is briefly discussed from material design to device development. |
doi_str_mv | 10.1007/s40843-018-9314-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2163183609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2163183609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a0638161cf98684f704b5dd0845ea6b44803ac2f6ac13307e32a605b0e2083473</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGo_gLeCV6Mz-bfJUYpaoeBFzyGbzrZb2u6abA9-e1NW8OTpvcN7b4YfY7cIDwhQPWYFVkkOaLmTqLi-YBOBznGlAS-LB6e5FcJcs1nOOwBAoxGdnbD7Rdf3lOZxG_ax29CxXdN82FI6dLSnOKQ2zg9hoNSGfb5hV00Rmv3qlH2-PH8slnz1_vq2eFrxKLUbeAAjLRqMjbPGqqYCVev1uvyoKZhaKQsyRNGYEFFKqEiKYEDXQAKsVJWcsrtxt0_d14ny4HfdKR3LSS_QSLTSgCspHFMxdTknanyf2kNI3x7Bn7n4kYsvXPyZi9elI8ZOLtnjhtLf8v-lH7jlYyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2163183609</pqid></control><display><type>article</type><title>Copper chalcogenide thermoelectric materials</title><source>Springer Nature</source><creator>Wei, Tian-Ran ; Qin, Yuting ; Deng, Tingting ; Song, Qingfeng ; Jiang, Binbin ; Liu, Ruiheng ; Qiu, Pengfei ; Shi, Xun ; Chen, Lidong</creator><creatorcontrib>Wei, Tian-Ran ; Qin, Yuting ; Deng, Tingting ; Song, Qingfeng ; Jiang, Binbin ; Liu, Ruiheng ; Qiu, Pengfei ; Shi, Xun ; Chen, Lidong</creatorcontrib><description>Cu-based chalcogenides have received increasing attention as promising thermoelectric materials due to their high efficiency, tunable transport properties, high elemental abundance and low toxicity. In this review, we summarize the recent research progress on this large family compounds covering diamond-like chalcogenides and liquid-like Cu
2
X (X=S, Se, Te) binary compounds as well as their multinary derivatives. These materials have the general features of two sublattices to decouple electron and phonon transport properties. On the one hand, the complex crystal structure and the disordered or even liquid-like sublattice bring about an intrinsically low lattice thermal conductivity. On the other hand, the rigid sublattice constitutes the charge-transport network, maintaining a decent electrical performance. For specific material systems, we demonstrate their unique structural features and outline the structure-performance correlation. Various design strategies including doping, alloying, band engineering and nanostructure architecture, covering nearly all the material scale, are also presented. Finally, the potential of the application of Cu-based chalcogenides as high-performance thermoelectric materials is briefly discussed from material design to device development.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-018-9314-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Chalcogenides ; Charge transport ; Chemistry and Materials Science ; Chemistry/Food Science ; Copper ; Crystal structure ; Design engineering ; Diamonds ; Electrical resistivity ; Materials Science ; Reviews ; Thermal conductivity ; Thermoelectric materials ; Toxicity ; Transport properties ; Transportation networks</subject><ispartof>Science China materials, 2019, Vol.62 (1), p.8-24</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a0638161cf98684f704b5dd0845ea6b44803ac2f6ac13307e32a605b0e2083473</citedby><cites>FETCH-LOGICAL-c359t-a0638161cf98684f704b5dd0845ea6b44803ac2f6ac13307e32a605b0e2083473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Wei, Tian-Ran</creatorcontrib><creatorcontrib>Qin, Yuting</creatorcontrib><creatorcontrib>Deng, Tingting</creatorcontrib><creatorcontrib>Song, Qingfeng</creatorcontrib><creatorcontrib>Jiang, Binbin</creatorcontrib><creatorcontrib>Liu, Ruiheng</creatorcontrib><creatorcontrib>Qiu, Pengfei</creatorcontrib><creatorcontrib>Shi, Xun</creatorcontrib><creatorcontrib>Chen, Lidong</creatorcontrib><title>Copper chalcogenide thermoelectric materials</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Cu-based chalcogenides have received increasing attention as promising thermoelectric materials due to their high efficiency, tunable transport properties, high elemental abundance and low toxicity. In this review, we summarize the recent research progress on this large family compounds covering diamond-like chalcogenides and liquid-like Cu
2
X (X=S, Se, Te) binary compounds as well as their multinary derivatives. These materials have the general features of two sublattices to decouple electron and phonon transport properties. On the one hand, the complex crystal structure and the disordered or even liquid-like sublattice bring about an intrinsically low lattice thermal conductivity. On the other hand, the rigid sublattice constitutes the charge-transport network, maintaining a decent electrical performance. For specific material systems, we demonstrate their unique structural features and outline the structure-performance correlation. Various design strategies including doping, alloying, band engineering and nanostructure architecture, covering nearly all the material scale, are also presented. Finally, the potential of the application of Cu-based chalcogenides as high-performance thermoelectric materials is briefly discussed from material design to device development.</description><subject>Chalcogenides</subject><subject>Charge transport</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Design engineering</subject><subject>Diamonds</subject><subject>Electrical resistivity</subject><subject>Materials Science</subject><subject>Reviews</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Toxicity</subject><subject>Transport properties</subject><subject>Transportation networks</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWGo_gLeCV6Mz-bfJUYpaoeBFzyGbzrZb2u6abA9-e1NW8OTpvcN7b4YfY7cIDwhQPWYFVkkOaLmTqLi-YBOBznGlAS-LB6e5FcJcs1nOOwBAoxGdnbD7Rdf3lOZxG_ax29CxXdN82FI6dLSnOKQ2zg9hoNSGfb5hV00Rmv3qlH2-PH8slnz1_vq2eFrxKLUbeAAjLRqMjbPGqqYCVev1uvyoKZhaKQsyRNGYEFFKqEiKYEDXQAKsVJWcsrtxt0_d14ny4HfdKR3LSS_QSLTSgCspHFMxdTknanyf2kNI3x7Bn7n4kYsvXPyZi9elI8ZOLtnjhtLf8v-lH7jlYyA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wei, Tian-Ran</creator><creator>Qin, Yuting</creator><creator>Deng, Tingting</creator><creator>Song, Qingfeng</creator><creator>Jiang, Binbin</creator><creator>Liu, Ruiheng</creator><creator>Qiu, Pengfei</creator><creator>Shi, Xun</creator><creator>Chen, Lidong</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2019</creationdate><title>Copper chalcogenide thermoelectric materials</title><author>Wei, Tian-Ran ; Qin, Yuting ; Deng, Tingting ; Song, Qingfeng ; Jiang, Binbin ; Liu, Ruiheng ; Qiu, Pengfei ; Shi, Xun ; Chen, Lidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a0638161cf98684f704b5dd0845ea6b44803ac2f6ac13307e32a605b0e2083473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chalcogenides</topic><topic>Charge transport</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Design engineering</topic><topic>Diamonds</topic><topic>Electrical resistivity</topic><topic>Materials Science</topic><topic>Reviews</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Toxicity</topic><topic>Transport properties</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Tian-Ran</creatorcontrib><creatorcontrib>Qin, Yuting</creatorcontrib><creatorcontrib>Deng, Tingting</creatorcontrib><creatorcontrib>Song, Qingfeng</creatorcontrib><creatorcontrib>Jiang, Binbin</creatorcontrib><creatorcontrib>Liu, Ruiheng</creatorcontrib><creatorcontrib>Qiu, Pengfei</creatorcontrib><creatorcontrib>Shi, Xun</creatorcontrib><creatorcontrib>Chen, Lidong</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Tian-Ran</au><au>Qin, Yuting</au><au>Deng, Tingting</au><au>Song, Qingfeng</au><au>Jiang, Binbin</au><au>Liu, Ruiheng</au><au>Qiu, Pengfei</au><au>Shi, Xun</au><au>Chen, Lidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copper chalcogenide thermoelectric materials</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2019</date><risdate>2019</risdate><volume>62</volume><issue>1</issue><spage>8</spage><epage>24</epage><pages>8-24</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Cu-based chalcogenides have received increasing attention as promising thermoelectric materials due to their high efficiency, tunable transport properties, high elemental abundance and low toxicity. In this review, we summarize the recent research progress on this large family compounds covering diamond-like chalcogenides and liquid-like Cu
2
X (X=S, Se, Te) binary compounds as well as their multinary derivatives. These materials have the general features of two sublattices to decouple electron and phonon transport properties. On the one hand, the complex crystal structure and the disordered or even liquid-like sublattice bring about an intrinsically low lattice thermal conductivity. On the other hand, the rigid sublattice constitutes the charge-transport network, maintaining a decent electrical performance. For specific material systems, we demonstrate their unique structural features and outline the structure-performance correlation. Various design strategies including doping, alloying, band engineering and nanostructure architecture, covering nearly all the material scale, are also presented. Finally, the potential of the application of Cu-based chalcogenides as high-performance thermoelectric materials is briefly discussed from material design to device development.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-018-9314-5</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-8226 |
ispartof | Science China materials, 2019, Vol.62 (1), p.8-24 |
issn | 2095-8226 2199-4501 |
language | eng |
recordid | cdi_proquest_journals_2163183609 |
source | Springer Nature |
subjects | Chalcogenides Charge transport Chemistry and Materials Science Chemistry/Food Science Copper Crystal structure Design engineering Diamonds Electrical resistivity Materials Science Reviews Thermal conductivity Thermoelectric materials Toxicity Transport properties Transportation networks |
title | Copper chalcogenide thermoelectric materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copper%20chalcogenide%20thermoelectric%20materials&rft.jtitle=Science%20China%20materials&rft.au=Wei,%20Tian-Ran&rft.date=2019&rft.volume=62&rft.issue=1&rft.spage=8&rft.epage=24&rft.pages=8-24&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-018-9314-5&rft_dat=%3Cproquest_cross%3E2163183609%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-a0638161cf98684f704b5dd0845ea6b44803ac2f6ac13307e32a605b0e2083473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2163183609&rft_id=info:pmid/&rfr_iscdi=true |