Loading…

Copper chalcogenide thermoelectric materials

Cu-based chalcogenides have received increasing attention as promising thermoelectric materials due to their high efficiency, tunable transport properties, high elemental abundance and low toxicity. In this review, we summarize the recent research progress on this large family compounds covering dia...

Full description

Saved in:
Bibliographic Details
Published in:Science China materials 2019, Vol.62 (1), p.8-24
Main Authors: Wei, Tian-Ran, Qin, Yuting, Deng, Tingting, Song, Qingfeng, Jiang, Binbin, Liu, Ruiheng, Qiu, Pengfei, Shi, Xun, Chen, Lidong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-a0638161cf98684f704b5dd0845ea6b44803ac2f6ac13307e32a605b0e2083473
cites cdi_FETCH-LOGICAL-c359t-a0638161cf98684f704b5dd0845ea6b44803ac2f6ac13307e32a605b0e2083473
container_end_page 24
container_issue 1
container_start_page 8
container_title Science China materials
container_volume 62
creator Wei, Tian-Ran
Qin, Yuting
Deng, Tingting
Song, Qingfeng
Jiang, Binbin
Liu, Ruiheng
Qiu, Pengfei
Shi, Xun
Chen, Lidong
description Cu-based chalcogenides have received increasing attention as promising thermoelectric materials due to their high efficiency, tunable transport properties, high elemental abundance and low toxicity. In this review, we summarize the recent research progress on this large family compounds covering diamond-like chalcogenides and liquid-like Cu 2 X (X=S, Se, Te) binary compounds as well as their multinary derivatives. These materials have the general features of two sublattices to decouple electron and phonon transport properties. On the one hand, the complex crystal structure and the disordered or even liquid-like sublattice bring about an intrinsically low lattice thermal conductivity. On the other hand, the rigid sublattice constitutes the charge-transport network, maintaining a decent electrical performance. For specific material systems, we demonstrate their unique structural features and outline the structure-performance correlation. Various design strategies including doping, alloying, band engineering and nanostructure architecture, covering nearly all the material scale, are also presented. Finally, the potential of the application of Cu-based chalcogenides as high-performance thermoelectric materials is briefly discussed from material design to device development.
doi_str_mv 10.1007/s40843-018-9314-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2163183609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2163183609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a0638161cf98684f704b5dd0845ea6b44803ac2f6ac13307e32a605b0e2083473</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGo_gLeCV6Mz-bfJUYpaoeBFzyGbzrZb2u6abA9-e1NW8OTpvcN7b4YfY7cIDwhQPWYFVkkOaLmTqLi-YBOBznGlAS-LB6e5FcJcs1nOOwBAoxGdnbD7Rdf3lOZxG_ax29CxXdN82FI6dLSnOKQ2zg9hoNSGfb5hV00Rmv3qlH2-PH8slnz1_vq2eFrxKLUbeAAjLRqMjbPGqqYCVev1uvyoKZhaKQsyRNGYEFFKqEiKYEDXQAKsVJWcsrtxt0_d14ny4HfdKR3LSS_QSLTSgCspHFMxdTknanyf2kNI3x7Bn7n4kYsvXPyZi9elI8ZOLtnjhtLf8v-lH7jlYyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2163183609</pqid></control><display><type>article</type><title>Copper chalcogenide thermoelectric materials</title><source>Springer Nature</source><creator>Wei, Tian-Ran ; Qin, Yuting ; Deng, Tingting ; Song, Qingfeng ; Jiang, Binbin ; Liu, Ruiheng ; Qiu, Pengfei ; Shi, Xun ; Chen, Lidong</creator><creatorcontrib>Wei, Tian-Ran ; Qin, Yuting ; Deng, Tingting ; Song, Qingfeng ; Jiang, Binbin ; Liu, Ruiheng ; Qiu, Pengfei ; Shi, Xun ; Chen, Lidong</creatorcontrib><description>Cu-based chalcogenides have received increasing attention as promising thermoelectric materials due to their high efficiency, tunable transport properties, high elemental abundance and low toxicity. In this review, we summarize the recent research progress on this large family compounds covering diamond-like chalcogenides and liquid-like Cu 2 X (X=S, Se, Te) binary compounds as well as their multinary derivatives. These materials have the general features of two sublattices to decouple electron and phonon transport properties. On the one hand, the complex crystal structure and the disordered or even liquid-like sublattice bring about an intrinsically low lattice thermal conductivity. On the other hand, the rigid sublattice constitutes the charge-transport network, maintaining a decent electrical performance. For specific material systems, we demonstrate their unique structural features and outline the structure-performance correlation. Various design strategies including doping, alloying, band engineering and nanostructure architecture, covering nearly all the material scale, are also presented. Finally, the potential of the application of Cu-based chalcogenides as high-performance thermoelectric materials is briefly discussed from material design to device development.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-018-9314-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Chalcogenides ; Charge transport ; Chemistry and Materials Science ; Chemistry/Food Science ; Copper ; Crystal structure ; Design engineering ; Diamonds ; Electrical resistivity ; Materials Science ; Reviews ; Thermal conductivity ; Thermoelectric materials ; Toxicity ; Transport properties ; Transportation networks</subject><ispartof>Science China materials, 2019, Vol.62 (1), p.8-24</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a0638161cf98684f704b5dd0845ea6b44803ac2f6ac13307e32a605b0e2083473</citedby><cites>FETCH-LOGICAL-c359t-a0638161cf98684f704b5dd0845ea6b44803ac2f6ac13307e32a605b0e2083473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Wei, Tian-Ran</creatorcontrib><creatorcontrib>Qin, Yuting</creatorcontrib><creatorcontrib>Deng, Tingting</creatorcontrib><creatorcontrib>Song, Qingfeng</creatorcontrib><creatorcontrib>Jiang, Binbin</creatorcontrib><creatorcontrib>Liu, Ruiheng</creatorcontrib><creatorcontrib>Qiu, Pengfei</creatorcontrib><creatorcontrib>Shi, Xun</creatorcontrib><creatorcontrib>Chen, Lidong</creatorcontrib><title>Copper chalcogenide thermoelectric materials</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Cu-based chalcogenides have received increasing attention as promising thermoelectric materials due to their high efficiency, tunable transport properties, high elemental abundance and low toxicity. In this review, we summarize the recent research progress on this large family compounds covering diamond-like chalcogenides and liquid-like Cu 2 X (X=S, Se, Te) binary compounds as well as their multinary derivatives. These materials have the general features of two sublattices to decouple electron and phonon transport properties. On the one hand, the complex crystal structure and the disordered or even liquid-like sublattice bring about an intrinsically low lattice thermal conductivity. On the other hand, the rigid sublattice constitutes the charge-transport network, maintaining a decent electrical performance. For specific material systems, we demonstrate their unique structural features and outline the structure-performance correlation. Various design strategies including doping, alloying, band engineering and nanostructure architecture, covering nearly all the material scale, are also presented. Finally, the potential of the application of Cu-based chalcogenides as high-performance thermoelectric materials is briefly discussed from material design to device development.</description><subject>Chalcogenides</subject><subject>Charge transport</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Design engineering</subject><subject>Diamonds</subject><subject>Electrical resistivity</subject><subject>Materials Science</subject><subject>Reviews</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Toxicity</subject><subject>Transport properties</subject><subject>Transportation networks</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWGo_gLeCV6Mz-bfJUYpaoeBFzyGbzrZb2u6abA9-e1NW8OTpvcN7b4YfY7cIDwhQPWYFVkkOaLmTqLi-YBOBznGlAS-LB6e5FcJcs1nOOwBAoxGdnbD7Rdf3lOZxG_ax29CxXdN82FI6dLSnOKQ2zg9hoNSGfb5hV00Rmv3qlH2-PH8slnz1_vq2eFrxKLUbeAAjLRqMjbPGqqYCVev1uvyoKZhaKQsyRNGYEFFKqEiKYEDXQAKsVJWcsrtxt0_d14ny4HfdKR3LSS_QSLTSgCspHFMxdTknanyf2kNI3x7Bn7n4kYsvXPyZi9elI8ZOLtnjhtLf8v-lH7jlYyA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wei, Tian-Ran</creator><creator>Qin, Yuting</creator><creator>Deng, Tingting</creator><creator>Song, Qingfeng</creator><creator>Jiang, Binbin</creator><creator>Liu, Ruiheng</creator><creator>Qiu, Pengfei</creator><creator>Shi, Xun</creator><creator>Chen, Lidong</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2019</creationdate><title>Copper chalcogenide thermoelectric materials</title><author>Wei, Tian-Ran ; Qin, Yuting ; Deng, Tingting ; Song, Qingfeng ; Jiang, Binbin ; Liu, Ruiheng ; Qiu, Pengfei ; Shi, Xun ; Chen, Lidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a0638161cf98684f704b5dd0845ea6b44803ac2f6ac13307e32a605b0e2083473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chalcogenides</topic><topic>Charge transport</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Design engineering</topic><topic>Diamonds</topic><topic>Electrical resistivity</topic><topic>Materials Science</topic><topic>Reviews</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Toxicity</topic><topic>Transport properties</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Tian-Ran</creatorcontrib><creatorcontrib>Qin, Yuting</creatorcontrib><creatorcontrib>Deng, Tingting</creatorcontrib><creatorcontrib>Song, Qingfeng</creatorcontrib><creatorcontrib>Jiang, Binbin</creatorcontrib><creatorcontrib>Liu, Ruiheng</creatorcontrib><creatorcontrib>Qiu, Pengfei</creatorcontrib><creatorcontrib>Shi, Xun</creatorcontrib><creatorcontrib>Chen, Lidong</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Tian-Ran</au><au>Qin, Yuting</au><au>Deng, Tingting</au><au>Song, Qingfeng</au><au>Jiang, Binbin</au><au>Liu, Ruiheng</au><au>Qiu, Pengfei</au><au>Shi, Xun</au><au>Chen, Lidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copper chalcogenide thermoelectric materials</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2019</date><risdate>2019</risdate><volume>62</volume><issue>1</issue><spage>8</spage><epage>24</epage><pages>8-24</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Cu-based chalcogenides have received increasing attention as promising thermoelectric materials due to their high efficiency, tunable transport properties, high elemental abundance and low toxicity. In this review, we summarize the recent research progress on this large family compounds covering diamond-like chalcogenides and liquid-like Cu 2 X (X=S, Se, Te) binary compounds as well as their multinary derivatives. These materials have the general features of two sublattices to decouple electron and phonon transport properties. On the one hand, the complex crystal structure and the disordered or even liquid-like sublattice bring about an intrinsically low lattice thermal conductivity. On the other hand, the rigid sublattice constitutes the charge-transport network, maintaining a decent electrical performance. For specific material systems, we demonstrate their unique structural features and outline the structure-performance correlation. Various design strategies including doping, alloying, band engineering and nanostructure architecture, covering nearly all the material scale, are also presented. Finally, the potential of the application of Cu-based chalcogenides as high-performance thermoelectric materials is briefly discussed from material design to device development.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-018-9314-5</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-8226
ispartof Science China materials, 2019, Vol.62 (1), p.8-24
issn 2095-8226
2199-4501
language eng
recordid cdi_proquest_journals_2163183609
source Springer Nature
subjects Chalcogenides
Charge transport
Chemistry and Materials Science
Chemistry/Food Science
Copper
Crystal structure
Design engineering
Diamonds
Electrical resistivity
Materials Science
Reviews
Thermal conductivity
Thermoelectric materials
Toxicity
Transport properties
Transportation networks
title Copper chalcogenide thermoelectric materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copper%20chalcogenide%20thermoelectric%20materials&rft.jtitle=Science%20China%20materials&rft.au=Wei,%20Tian-Ran&rft.date=2019&rft.volume=62&rft.issue=1&rft.spage=8&rft.epage=24&rft.pages=8-24&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-018-9314-5&rft_dat=%3Cproquest_cross%3E2163183609%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-a0638161cf98684f704b5dd0845ea6b44803ac2f6ac13307e32a605b0e2083473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2163183609&rft_id=info:pmid/&rfr_iscdi=true