Loading…

Lost in Aggregation: Improving Event Analysis with Report-Level Data

Most measures of social conflict processes are derived from primary and secondary source reports. In many caseSy reports are used to create event-level data sets by aggregating information from multiple, and often conflicting, reports to single event observations. We argue that this pre-aggregation...

Full description

Saved in:
Bibliographic Details
Published in:American journal of political science 2019-01, Vol.63 (1), p.250-264
Main Authors: Cook, Scott J., Weidmann, Nills B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3678-9cca855abf35a269a0837f8025d049fdcad53776541a1f9b3fe604204e6d76ab3
cites cdi_FETCH-LOGICAL-c3678-9cca855abf35a269a0837f8025d049fdcad53776541a1f9b3fe604204e6d76ab3
container_end_page 264
container_issue 1
container_start_page 250
container_title American journal of political science
container_volume 63
creator Cook, Scott J.
Weidmann, Nills B.
description Most measures of social conflict processes are derived from primary and secondary source reports. In many caseSy reports are used to create event-level data sets by aggregating information from multiple, and often conflicting, reports to single event observations. We argue that this pre-aggregation is less innocuous than it seems, costing applied researchers opportunities for improved inference. First, researchers cannot evaluate the consequences of different methods of report aggregation. Second, aggregation discards report-level information (i.e., variation across reports) that is useful in addressing measurement error inherent in event data. Therefore, we advocate that data should be supplied and analyzed at the report level. We demonstrate the consequences of using aggregated event data as a predictor or outcome variable, and how analysis can be improved using report-level information directly. These gains are demonstrated with simulated-data experiments and in the analysis of real-world data, using the newly available Mass Mobilization in Autocracies Database (MMAD).
doi_str_mv 10.1111/ajps.12398
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2164549749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45132474</jstor_id><sourcerecordid>45132474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3678-9cca855abf35a269a0837f8025d049fdcad53776541a1f9b3fe604204e6d76ab3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFY3_oIBcSOkzjOTcRf60EpA8bEepskkJqRJnJm29N-bGgVX3s3lwncu5xwALjGa4H5uddW5CSZURkdghDlDAZdIHIMRQpIEPOL0FJw5V6H-ZpKOwCxpnYdlA-OisKbQvmybO7hcd7bdlk0B51vTeBg3ut670sFd6T_gi-la64PEbE0NZ9rrc3CS69qZi589Bu-L-dv0IUie7pfTOAlSGoookGmqI871Kqdck1BqFFGRR4jwDDGZZ6nOOBUi5AxrnMsVzU2IGEHMhJkI9YqOwdXwt3f3uTHOq6rd2N6bUwSHjDMp-lBjcDNQqW2dsyZXnS3X2u4VRurQkjq0pL5b6mE8wLuyNvt_SBU_Pr_-aq4HTeV8a_9qCEVCMY4pYYLRLwd-dHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164549749</pqid></control><display><type>article</type><title>Lost in Aggregation: Improving Event Analysis with Report-Level Data</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Worldwide Political Science Abstracts</source><source>Sociological Abstracts</source><creator>Cook, Scott J. ; Weidmann, Nills B.</creator><creatorcontrib>Cook, Scott J. ; Weidmann, Nills B.</creatorcontrib><description>Most measures of social conflict processes are derived from primary and secondary source reports. In many caseSy reports are used to create event-level data sets by aggregating information from multiple, and often conflicting, reports to single event observations. We argue that this pre-aggregation is less innocuous than it seems, costing applied researchers opportunities for improved inference. First, researchers cannot evaluate the consequences of different methods of report aggregation. Second, aggregation discards report-level information (i.e., variation across reports) that is useful in addressing measurement error inherent in event data. Therefore, we advocate that data should be supplied and analyzed at the report level. We demonstrate the consequences of using aggregated event data as a predictor or outcome variable, and how analysis can be improved using report-level information directly. These gains are demonstrated with simulated-data experiments and in the analysis of real-world data, using the newly available Mass Mobilization in Autocracies Database (MMAD).</description><identifier>ISSN: 0092-5853</identifier><identifier>EISSN: 1540-5907</identifier><identifier>DOI: 10.1111/ajps.12398</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Aggregate data ; AJPS WORKSHOP ; Archives &amp; records ; Autocracy ; Costing ; Data ; Data collection ; Datasets ; Demonstrations &amp; protests ; Economic models ; Estimates ; Experiments ; Inference ; Measurement ; Measurement errors ; Mobilization ; Monte Carlo simulation ; Researchers ; Social conflict ; Variables ; Violence</subject><ispartof>American journal of political science, 2019-01, Vol.63 (1), p.250-264</ispartof><rights>2019 Midwest Political Science Association</rights><rights>2018, Midwest Political Science Association</rights><rights>2019 by the Midwest Political Science Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3678-9cca855abf35a269a0837f8025d049fdcad53776541a1f9b3fe604204e6d76ab3</citedby><cites>FETCH-LOGICAL-c3678-9cca855abf35a269a0837f8025d049fdcad53776541a1f9b3fe604204e6d76ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45132474$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45132474$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,33223,33774,58238,58471</link.rule.ids></links><search><creatorcontrib>Cook, Scott J.</creatorcontrib><creatorcontrib>Weidmann, Nills B.</creatorcontrib><title>Lost in Aggregation: Improving Event Analysis with Report-Level Data</title><title>American journal of political science</title><description>Most measures of social conflict processes are derived from primary and secondary source reports. In many caseSy reports are used to create event-level data sets by aggregating information from multiple, and often conflicting, reports to single event observations. We argue that this pre-aggregation is less innocuous than it seems, costing applied researchers opportunities for improved inference. First, researchers cannot evaluate the consequences of different methods of report aggregation. Second, aggregation discards report-level information (i.e., variation across reports) that is useful in addressing measurement error inherent in event data. Therefore, we advocate that data should be supplied and analyzed at the report level. We demonstrate the consequences of using aggregated event data as a predictor or outcome variable, and how analysis can be improved using report-level information directly. These gains are demonstrated with simulated-data experiments and in the analysis of real-world data, using the newly available Mass Mobilization in Autocracies Database (MMAD).</description><subject>Aggregate data</subject><subject>AJPS WORKSHOP</subject><subject>Archives &amp; records</subject><subject>Autocracy</subject><subject>Costing</subject><subject>Data</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Demonstrations &amp; protests</subject><subject>Economic models</subject><subject>Estimates</subject><subject>Experiments</subject><subject>Inference</subject><subject>Measurement</subject><subject>Measurement errors</subject><subject>Mobilization</subject><subject>Monte Carlo simulation</subject><subject>Researchers</subject><subject>Social conflict</subject><subject>Variables</subject><subject>Violence</subject><issn>0092-5853</issn><issn>1540-5907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><sourceid>8BJ</sourceid><sourceid>BHHNA</sourceid><recordid>eNp9kEtLw0AUhQdRsFY3_oIBcSOkzjOTcRf60EpA8bEepskkJqRJnJm29N-bGgVX3s3lwncu5xwALjGa4H5uddW5CSZURkdghDlDAZdIHIMRQpIEPOL0FJw5V6H-ZpKOwCxpnYdlA-OisKbQvmybO7hcd7bdlk0B51vTeBg3ut670sFd6T_gi-la64PEbE0NZ9rrc3CS69qZi589Bu-L-dv0IUie7pfTOAlSGoookGmqI871Kqdck1BqFFGRR4jwDDGZZ6nOOBUi5AxrnMsVzU2IGEHMhJkI9YqOwdXwt3f3uTHOq6rd2N6bUwSHjDMp-lBjcDNQqW2dsyZXnS3X2u4VRurQkjq0pL5b6mE8wLuyNvt_SBU_Pr_-aq4HTeV8a_9qCEVCMY4pYYLRLwd-dHo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Cook, Scott J.</creator><creator>Weidmann, Nills B.</creator><general>Wiley Subscription Services, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>7UB</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope></search><sort><creationdate>20190101</creationdate><title>Lost in Aggregation: Improving Event Analysis with Report-Level Data</title><author>Cook, Scott J. ; Weidmann, Nills B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3678-9cca855abf35a269a0837f8025d049fdcad53776541a1f9b3fe604204e6d76ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aggregate data</topic><topic>AJPS WORKSHOP</topic><topic>Archives &amp; records</topic><topic>Autocracy</topic><topic>Costing</topic><topic>Data</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Demonstrations &amp; protests</topic><topic>Economic models</topic><topic>Estimates</topic><topic>Experiments</topic><topic>Inference</topic><topic>Measurement</topic><topic>Measurement errors</topic><topic>Mobilization</topic><topic>Monte Carlo simulation</topic><topic>Researchers</topic><topic>Social conflict</topic><topic>Variables</topic><topic>Violence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cook, Scott J.</creatorcontrib><creatorcontrib>Weidmann, Nills B.</creatorcontrib><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Worldwide Political Science Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>American journal of political science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cook, Scott J.</au><au>Weidmann, Nills B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lost in Aggregation: Improving Event Analysis with Report-Level Data</atitle><jtitle>American journal of political science</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>63</volume><issue>1</issue><spage>250</spage><epage>264</epage><pages>250-264</pages><issn>0092-5853</issn><eissn>1540-5907</eissn><abstract>Most measures of social conflict processes are derived from primary and secondary source reports. In many caseSy reports are used to create event-level data sets by aggregating information from multiple, and often conflicting, reports to single event observations. We argue that this pre-aggregation is less innocuous than it seems, costing applied researchers opportunities for improved inference. First, researchers cannot evaluate the consequences of different methods of report aggregation. Second, aggregation discards report-level information (i.e., variation across reports) that is useful in addressing measurement error inherent in event data. Therefore, we advocate that data should be supplied and analyzed at the report level. We demonstrate the consequences of using aggregated event data as a predictor or outcome variable, and how analysis can be improved using report-level information directly. These gains are demonstrated with simulated-data experiments and in the analysis of real-world data, using the newly available Mass Mobilization in Autocracies Database (MMAD).</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ajps.12398</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-5853
ispartof American journal of political science, 2019-01, Vol.63 (1), p.250-264
issn 0092-5853
1540-5907
language eng
recordid cdi_proquest_journals_2164549749
source International Bibliography of the Social Sciences (IBSS); Wiley; JSTOR Archival Journals and Primary Sources Collection; Worldwide Political Science Abstracts; Sociological Abstracts
subjects Aggregate data
AJPS WORKSHOP
Archives & records
Autocracy
Costing
Data
Data collection
Datasets
Demonstrations & protests
Economic models
Estimates
Experiments
Inference
Measurement
Measurement errors
Mobilization
Monte Carlo simulation
Researchers
Social conflict
Variables
Violence
title Lost in Aggregation: Improving Event Analysis with Report-Level Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lost%20in%20Aggregation:%20Improving%20Event%20Analysis%20with%20Report-Level%20Data&rft.jtitle=American%20journal%20of%20political%20science&rft.au=Cook,%20Scott%20J.&rft.date=2019-01-01&rft.volume=63&rft.issue=1&rft.spage=250&rft.epage=264&rft.pages=250-264&rft.issn=0092-5853&rft.eissn=1540-5907&rft_id=info:doi/10.1111/ajps.12398&rft_dat=%3Cjstor_proqu%3E45132474%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3678-9cca855abf35a269a0837f8025d049fdcad53776541a1f9b3fe604204e6d76ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2164549749&rft_id=info:pmid/&rft_jstor_id=45132474&rfr_iscdi=true