Loading…
Lost in Aggregation: Improving Event Analysis with Report-Level Data
Most measures of social conflict processes are derived from primary and secondary source reports. In many caseSy reports are used to create event-level data sets by aggregating information from multiple, and often conflicting, reports to single event observations. We argue that this pre-aggregation...
Saved in:
Published in: | American journal of political science 2019-01, Vol.63 (1), p.250-264 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3678-9cca855abf35a269a0837f8025d049fdcad53776541a1f9b3fe604204e6d76ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3678-9cca855abf35a269a0837f8025d049fdcad53776541a1f9b3fe604204e6d76ab3 |
container_end_page | 264 |
container_issue | 1 |
container_start_page | 250 |
container_title | American journal of political science |
container_volume | 63 |
creator | Cook, Scott J. Weidmann, Nills B. |
description | Most measures of social conflict processes are derived from primary and secondary source reports. In many caseSy reports are used to create event-level data sets by aggregating information from multiple, and often conflicting, reports to single event observations. We argue that this pre-aggregation is less innocuous than it seems, costing applied researchers opportunities for improved inference. First, researchers cannot evaluate the consequences of different methods of report aggregation. Second, aggregation discards report-level information (i.e., variation across reports) that is useful in addressing measurement error inherent in event data. Therefore, we advocate that data should be supplied and analyzed at the report level. We demonstrate the consequences of using aggregated event data as a predictor or outcome variable, and how analysis can be improved using report-level information directly. These gains are demonstrated with simulated-data experiments and in the analysis of real-world data, using the newly available Mass Mobilization in Autocracies Database (MMAD). |
doi_str_mv | 10.1111/ajps.12398 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2164549749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45132474</jstor_id><sourcerecordid>45132474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3678-9cca855abf35a269a0837f8025d049fdcad53776541a1f9b3fe604204e6d76ab3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFY3_oIBcSOkzjOTcRf60EpA8bEepskkJqRJnJm29N-bGgVX3s3lwncu5xwALjGa4H5uddW5CSZURkdghDlDAZdIHIMRQpIEPOL0FJw5V6H-ZpKOwCxpnYdlA-OisKbQvmybO7hcd7bdlk0B51vTeBg3ut670sFd6T_gi-la64PEbE0NZ9rrc3CS69qZi589Bu-L-dv0IUie7pfTOAlSGoookGmqI871Kqdck1BqFFGRR4jwDDGZZ6nOOBUi5AxrnMsVzU2IGEHMhJkI9YqOwdXwt3f3uTHOq6rd2N6bUwSHjDMp-lBjcDNQqW2dsyZXnS3X2u4VRurQkjq0pL5b6mE8wLuyNvt_SBU_Pr_-aq4HTeV8a_9qCEVCMY4pYYLRLwd-dHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164549749</pqid></control><display><type>article</type><title>Lost in Aggregation: Improving Event Analysis with Report-Level Data</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Worldwide Political Science Abstracts</source><source>Sociological Abstracts</source><creator>Cook, Scott J. ; Weidmann, Nills B.</creator><creatorcontrib>Cook, Scott J. ; Weidmann, Nills B.</creatorcontrib><description>Most measures of social conflict processes are derived from primary and secondary source reports. In many caseSy reports are used to create event-level data sets by aggregating information from multiple, and often conflicting, reports to single event observations. We argue that this pre-aggregation is less innocuous than it seems, costing applied researchers opportunities for improved inference. First, researchers cannot evaluate the consequences of different methods of report aggregation. Second, aggregation discards report-level information (i.e., variation across reports) that is useful in addressing measurement error inherent in event data. Therefore, we advocate that data should be supplied and analyzed at the report level. We demonstrate the consequences of using aggregated event data as a predictor or outcome variable, and how analysis can be improved using report-level information directly. These gains are demonstrated with simulated-data experiments and in the analysis of real-world data, using the newly available Mass Mobilization in Autocracies Database (MMAD).</description><identifier>ISSN: 0092-5853</identifier><identifier>EISSN: 1540-5907</identifier><identifier>DOI: 10.1111/ajps.12398</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Aggregate data ; AJPS WORKSHOP ; Archives & records ; Autocracy ; Costing ; Data ; Data collection ; Datasets ; Demonstrations & protests ; Economic models ; Estimates ; Experiments ; Inference ; Measurement ; Measurement errors ; Mobilization ; Monte Carlo simulation ; Researchers ; Social conflict ; Variables ; Violence</subject><ispartof>American journal of political science, 2019-01, Vol.63 (1), p.250-264</ispartof><rights>2019 Midwest Political Science Association</rights><rights>2018, Midwest Political Science Association</rights><rights>2019 by the Midwest Political Science Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3678-9cca855abf35a269a0837f8025d049fdcad53776541a1f9b3fe604204e6d76ab3</citedby><cites>FETCH-LOGICAL-c3678-9cca855abf35a269a0837f8025d049fdcad53776541a1f9b3fe604204e6d76ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45132474$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45132474$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,33223,33774,58238,58471</link.rule.ids></links><search><creatorcontrib>Cook, Scott J.</creatorcontrib><creatorcontrib>Weidmann, Nills B.</creatorcontrib><title>Lost in Aggregation: Improving Event Analysis with Report-Level Data</title><title>American journal of political science</title><description>Most measures of social conflict processes are derived from primary and secondary source reports. In many caseSy reports are used to create event-level data sets by aggregating information from multiple, and often conflicting, reports to single event observations. We argue that this pre-aggregation is less innocuous than it seems, costing applied researchers opportunities for improved inference. First, researchers cannot evaluate the consequences of different methods of report aggregation. Second, aggregation discards report-level information (i.e., variation across reports) that is useful in addressing measurement error inherent in event data. Therefore, we advocate that data should be supplied and analyzed at the report level. We demonstrate the consequences of using aggregated event data as a predictor or outcome variable, and how analysis can be improved using report-level information directly. These gains are demonstrated with simulated-data experiments and in the analysis of real-world data, using the newly available Mass Mobilization in Autocracies Database (MMAD).</description><subject>Aggregate data</subject><subject>AJPS WORKSHOP</subject><subject>Archives & records</subject><subject>Autocracy</subject><subject>Costing</subject><subject>Data</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Demonstrations & protests</subject><subject>Economic models</subject><subject>Estimates</subject><subject>Experiments</subject><subject>Inference</subject><subject>Measurement</subject><subject>Measurement errors</subject><subject>Mobilization</subject><subject>Monte Carlo simulation</subject><subject>Researchers</subject><subject>Social conflict</subject><subject>Variables</subject><subject>Violence</subject><issn>0092-5853</issn><issn>1540-5907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><sourceid>8BJ</sourceid><sourceid>BHHNA</sourceid><recordid>eNp9kEtLw0AUhQdRsFY3_oIBcSOkzjOTcRf60EpA8bEepskkJqRJnJm29N-bGgVX3s3lwncu5xwALjGa4H5uddW5CSZURkdghDlDAZdIHIMRQpIEPOL0FJw5V6H-ZpKOwCxpnYdlA-OisKbQvmybO7hcd7bdlk0B51vTeBg3ut670sFd6T_gi-la64PEbE0NZ9rrc3CS69qZi589Bu-L-dv0IUie7pfTOAlSGoookGmqI871Kqdck1BqFFGRR4jwDDGZZ6nOOBUi5AxrnMsVzU2IGEHMhJkI9YqOwdXwt3f3uTHOq6rd2N6bUwSHjDMp-lBjcDNQqW2dsyZXnS3X2u4VRurQkjq0pL5b6mE8wLuyNvt_SBU_Pr_-aq4HTeV8a_9qCEVCMY4pYYLRLwd-dHo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Cook, Scott J.</creator><creator>Weidmann, Nills B.</creator><general>Wiley Subscription Services, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>7UB</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope></search><sort><creationdate>20190101</creationdate><title>Lost in Aggregation: Improving Event Analysis with Report-Level Data</title><author>Cook, Scott J. ; Weidmann, Nills B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3678-9cca855abf35a269a0837f8025d049fdcad53776541a1f9b3fe604204e6d76ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aggregate data</topic><topic>AJPS WORKSHOP</topic><topic>Archives & records</topic><topic>Autocracy</topic><topic>Costing</topic><topic>Data</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Demonstrations & protests</topic><topic>Economic models</topic><topic>Estimates</topic><topic>Experiments</topic><topic>Inference</topic><topic>Measurement</topic><topic>Measurement errors</topic><topic>Mobilization</topic><topic>Monte Carlo simulation</topic><topic>Researchers</topic><topic>Social conflict</topic><topic>Variables</topic><topic>Violence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cook, Scott J.</creatorcontrib><creatorcontrib>Weidmann, Nills B.</creatorcontrib><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Worldwide Political Science Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>American journal of political science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cook, Scott J.</au><au>Weidmann, Nills B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lost in Aggregation: Improving Event Analysis with Report-Level Data</atitle><jtitle>American journal of political science</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>63</volume><issue>1</issue><spage>250</spage><epage>264</epage><pages>250-264</pages><issn>0092-5853</issn><eissn>1540-5907</eissn><abstract>Most measures of social conflict processes are derived from primary and secondary source reports. In many caseSy reports are used to create event-level data sets by aggregating information from multiple, and often conflicting, reports to single event observations. We argue that this pre-aggregation is less innocuous than it seems, costing applied researchers opportunities for improved inference. First, researchers cannot evaluate the consequences of different methods of report aggregation. Second, aggregation discards report-level information (i.e., variation across reports) that is useful in addressing measurement error inherent in event data. Therefore, we advocate that data should be supplied and analyzed at the report level. We demonstrate the consequences of using aggregated event data as a predictor or outcome variable, and how analysis can be improved using report-level information directly. These gains are demonstrated with simulated-data experiments and in the analysis of real-world data, using the newly available Mass Mobilization in Autocracies Database (MMAD).</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ajps.12398</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-5853 |
ispartof | American journal of political science, 2019-01, Vol.63 (1), p.250-264 |
issn | 0092-5853 1540-5907 |
language | eng |
recordid | cdi_proquest_journals_2164549749 |
source | International Bibliography of the Social Sciences (IBSS); Wiley; JSTOR Archival Journals and Primary Sources Collection; Worldwide Political Science Abstracts; Sociological Abstracts |
subjects | Aggregate data AJPS WORKSHOP Archives & records Autocracy Costing Data Data collection Datasets Demonstrations & protests Economic models Estimates Experiments Inference Measurement Measurement errors Mobilization Monte Carlo simulation Researchers Social conflict Variables Violence |
title | Lost in Aggregation: Improving Event Analysis with Report-Level Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lost%20in%20Aggregation:%20Improving%20Event%20Analysis%20with%20Report-Level%20Data&rft.jtitle=American%20journal%20of%20political%20science&rft.au=Cook,%20Scott%20J.&rft.date=2019-01-01&rft.volume=63&rft.issue=1&rft.spage=250&rft.epage=264&rft.pages=250-264&rft.issn=0092-5853&rft.eissn=1540-5907&rft_id=info:doi/10.1111/ajps.12398&rft_dat=%3Cjstor_proqu%3E45132474%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3678-9cca855abf35a269a0837f8025d049fdcad53776541a1f9b3fe604204e6d76ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2164549749&rft_id=info:pmid/&rft_jstor_id=45132474&rfr_iscdi=true |