Loading…
Modeling of dynamic systems with a variable number of phases in liquid–liquid equilibria
Modeling of dynamic systems with a variable number of phases is still a challenge, especially for multiple liquid phases. A common approach from literature derives first‐order Karush–Kuhn–Tucker (KKT) conditions of the Gibbs free energy minimization and relaxes these if a phase does not exist. It ai...
Saved in:
Published in: | AIChE journal 2019-02, Vol.65 (2), p.571-581 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3347-ff16912cc22c0915fa9aa5ded511c596902e82694b69899ef4dce6348b4a19863 |
---|---|
cites | cdi_FETCH-LOGICAL-c3347-ff16912cc22c0915fa9aa5ded511c596902e82694b69899ef4dce6348b4a19863 |
container_end_page | 581 |
container_issue | 2 |
container_start_page | 571 |
container_title | AIChE journal |
container_volume | 65 |
creator | Ploch, Tobias Glass, Moll Bremen, Andreas M. Hannemann‐Tamás, Ralf Mitsos, Alexander |
description | Modeling of dynamic systems with a variable number of phases is still a challenge, especially for multiple liquid phases. A common approach from literature derives first‐order Karush–Kuhn–Tucker (KKT) conditions of the Gibbs free energy minimization and relaxes these if a phase does not exist. It aims at enabling dynamic simulation in all phase regimes of systems in vapor–liquid equilibrium by following a nonphysical continuous solution. In this work, we demonstrate that this continuous solution is not always possible in liquid–liquid equilibrium problems. The demonstration is done both theoretically and for illustrative examples. To overcome the demonstrated issues, we review the use of negative flash approach that allows negative molar amounts of nonexisting phases and propose a hybrid continuous formulation that explicitly assigns phase variables in the single‐phase regime and solves flash equations otherwise. Various dynamic case studies demonstrate the applicability and limitations of all three approaches. © 2018 American Institute of Chemical Engineers AIChE J, 65: 571–581, 2019 |
doi_str_mv | 10.1002/aic.16447 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164584080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164584080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3347-ff16912cc22c0915fa9aa5ded511c596902e82694b69899ef4dce6348b4a19863</originalsourceid><addsrcrecordid>eNp1kMtOAyEUhonRxFpd-AYkrlxMCwxQWDaNlyY1bnTjhjAMWJq5tNCxmZ3v4Bv6JFLHrZtzy_efc_IDcI3RBCNEptqbCeaUzk7ACDM6y5hE7BSMEEI4SwN8Di5i3KSOzAQZgbentrSVb95h62DZN7r2BsY-7m0d4cHv11DDDx28LioLm64ubDiS27WONkLfwMrvOl9-f34NBbQpVr5Iiktw5nQV7dVfHoPX-7uXxWO2en5YLuarzOR5etA5zCUmxhBikMTMaak1K23JMDZMcomIFYRLWnAppLSOlsbynIqCaiwFz8fgZti7De2us3GvNm0XmnRSkWQFExQJlKjbgTKhjTFYp7bB1zr0CiN1tE4l69SvdYmdDuzBV7b_H1Tz5WJQ_AAhYHCW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164584080</pqid></control><display><type>article</type><title>Modeling of dynamic systems with a variable number of phases in liquid–liquid equilibria</title><source>Wiley</source><creator>Ploch, Tobias ; Glass, Moll ; Bremen, Andreas M. ; Hannemann‐Tamás, Ralf ; Mitsos, Alexander</creator><creatorcontrib>Ploch, Tobias ; Glass, Moll ; Bremen, Andreas M. ; Hannemann‐Tamás, Ralf ; Mitsos, Alexander</creatorcontrib><description>Modeling of dynamic systems with a variable number of phases is still a challenge, especially for multiple liquid phases. A common approach from literature derives first‐order Karush–Kuhn–Tucker (KKT) conditions of the Gibbs free energy minimization and relaxes these if a phase does not exist. It aims at enabling dynamic simulation in all phase regimes of systems in vapor–liquid equilibrium by following a nonphysical continuous solution. In this work, we demonstrate that this continuous solution is not always possible in liquid–liquid equilibrium problems. The demonstration is done both theoretically and for illustrative examples. To overcome the demonstrated issues, we review the use of negative flash approach that allows negative molar amounts of nonexisting phases and propose a hybrid continuous formulation that explicitly assigns phase variables in the single‐phase regime and solves flash equations otherwise. Various dynamic case studies demonstrate the applicability and limitations of all three approaches. © 2018 American Institute of Chemical Engineers AIChE J, 65: 571–581, 2019</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.16447</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Case studies ; Computer simulation ; dynamic simulation ; Dynamical systems ; Energy conservation ; Free energy ; Gibbs ; Gibbs free energy ; Liquid phases ; Liquid-liquid equilibrium ; Liquid-vapor equilibrium ; Modelling ; Organic chemistry ; phase change ; smooth ; VLLE</subject><ispartof>AIChE journal, 2019-02, Vol.65 (2), p.571-581</ispartof><rights>2018 American Institute of Chemical Engineers</rights><rights>2019 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3347-ff16912cc22c0915fa9aa5ded511c596902e82694b69899ef4dce6348b4a19863</citedby><cites>FETCH-LOGICAL-c3347-ff16912cc22c0915fa9aa5ded511c596902e82694b69899ef4dce6348b4a19863</cites><orcidid>0000-0003-0335-6566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ploch, Tobias</creatorcontrib><creatorcontrib>Glass, Moll</creatorcontrib><creatorcontrib>Bremen, Andreas M.</creatorcontrib><creatorcontrib>Hannemann‐Tamás, Ralf</creatorcontrib><creatorcontrib>Mitsos, Alexander</creatorcontrib><title>Modeling of dynamic systems with a variable number of phases in liquid–liquid equilibria</title><title>AIChE journal</title><description>Modeling of dynamic systems with a variable number of phases is still a challenge, especially for multiple liquid phases. A common approach from literature derives first‐order Karush–Kuhn–Tucker (KKT) conditions of the Gibbs free energy minimization and relaxes these if a phase does not exist. It aims at enabling dynamic simulation in all phase regimes of systems in vapor–liquid equilibrium by following a nonphysical continuous solution. In this work, we demonstrate that this continuous solution is not always possible in liquid–liquid equilibrium problems. The demonstration is done both theoretically and for illustrative examples. To overcome the demonstrated issues, we review the use of negative flash approach that allows negative molar amounts of nonexisting phases and propose a hybrid continuous formulation that explicitly assigns phase variables in the single‐phase regime and solves flash equations otherwise. Various dynamic case studies demonstrate the applicability and limitations of all three approaches. © 2018 American Institute of Chemical Engineers AIChE J, 65: 571–581, 2019</description><subject>Case studies</subject><subject>Computer simulation</subject><subject>dynamic simulation</subject><subject>Dynamical systems</subject><subject>Energy conservation</subject><subject>Free energy</subject><subject>Gibbs</subject><subject>Gibbs free energy</subject><subject>Liquid phases</subject><subject>Liquid-liquid equilibrium</subject><subject>Liquid-vapor equilibrium</subject><subject>Modelling</subject><subject>Organic chemistry</subject><subject>phase change</subject><subject>smooth</subject><subject>VLLE</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOAyEUhonRxFpd-AYkrlxMCwxQWDaNlyY1bnTjhjAMWJq5tNCxmZ3v4Bv6JFLHrZtzy_efc_IDcI3RBCNEptqbCeaUzk7ACDM6y5hE7BSMEEI4SwN8Di5i3KSOzAQZgbentrSVb95h62DZN7r2BsY-7m0d4cHv11DDDx28LioLm64ubDiS27WONkLfwMrvOl9-f34NBbQpVr5Iiktw5nQV7dVfHoPX-7uXxWO2en5YLuarzOR5etA5zCUmxhBikMTMaak1K23JMDZMcomIFYRLWnAppLSOlsbynIqCaiwFz8fgZti7De2us3GvNm0XmnRSkWQFExQJlKjbgTKhjTFYp7bB1zr0CiN1tE4l69SvdYmdDuzBV7b_H1Tz5WJQ_AAhYHCW</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Ploch, Tobias</creator><creator>Glass, Moll</creator><creator>Bremen, Andreas M.</creator><creator>Hannemann‐Tamás, Ralf</creator><creator>Mitsos, Alexander</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0335-6566</orcidid></search><sort><creationdate>201902</creationdate><title>Modeling of dynamic systems with a variable number of phases in liquid–liquid equilibria</title><author>Ploch, Tobias ; Glass, Moll ; Bremen, Andreas M. ; Hannemann‐Tamás, Ralf ; Mitsos, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3347-ff16912cc22c0915fa9aa5ded511c596902e82694b69899ef4dce6348b4a19863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Case studies</topic><topic>Computer simulation</topic><topic>dynamic simulation</topic><topic>Dynamical systems</topic><topic>Energy conservation</topic><topic>Free energy</topic><topic>Gibbs</topic><topic>Gibbs free energy</topic><topic>Liquid phases</topic><topic>Liquid-liquid equilibrium</topic><topic>Liquid-vapor equilibrium</topic><topic>Modelling</topic><topic>Organic chemistry</topic><topic>phase change</topic><topic>smooth</topic><topic>VLLE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ploch, Tobias</creatorcontrib><creatorcontrib>Glass, Moll</creatorcontrib><creatorcontrib>Bremen, Andreas M.</creatorcontrib><creatorcontrib>Hannemann‐Tamás, Ralf</creatorcontrib><creatorcontrib>Mitsos, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ploch, Tobias</au><au>Glass, Moll</au><au>Bremen, Andreas M.</au><au>Hannemann‐Tamás, Ralf</au><au>Mitsos, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of dynamic systems with a variable number of phases in liquid–liquid equilibria</atitle><jtitle>AIChE journal</jtitle><date>2019-02</date><risdate>2019</risdate><volume>65</volume><issue>2</issue><spage>571</spage><epage>581</epage><pages>571-581</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Modeling of dynamic systems with a variable number of phases is still a challenge, especially for multiple liquid phases. A common approach from literature derives first‐order Karush–Kuhn–Tucker (KKT) conditions of the Gibbs free energy minimization and relaxes these if a phase does not exist. It aims at enabling dynamic simulation in all phase regimes of systems in vapor–liquid equilibrium by following a nonphysical continuous solution. In this work, we demonstrate that this continuous solution is not always possible in liquid–liquid equilibrium problems. The demonstration is done both theoretically and for illustrative examples. To overcome the demonstrated issues, we review the use of negative flash approach that allows negative molar amounts of nonexisting phases and propose a hybrid continuous formulation that explicitly assigns phase variables in the single‐phase regime and solves flash equations otherwise. Various dynamic case studies demonstrate the applicability and limitations of all three approaches. © 2018 American Institute of Chemical Engineers AIChE J, 65: 571–581, 2019</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.16447</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0335-6566</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2019-02, Vol.65 (2), p.571-581 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_2164584080 |
source | Wiley |
subjects | Case studies Computer simulation dynamic simulation Dynamical systems Energy conservation Free energy Gibbs Gibbs free energy Liquid phases Liquid-liquid equilibrium Liquid-vapor equilibrium Modelling Organic chemistry phase change smooth VLLE |
title | Modeling of dynamic systems with a variable number of phases in liquid–liquid equilibria |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20dynamic%20systems%20with%20a%20variable%20number%20of%20phases%20in%20liquid%E2%80%93liquid%20equilibria&rft.jtitle=AIChE%20journal&rft.au=Ploch,%20Tobias&rft.date=2019-02&rft.volume=65&rft.issue=2&rft.spage=571&rft.epage=581&rft.pages=571-581&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.16447&rft_dat=%3Cproquest_cross%3E2164584080%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3347-ff16912cc22c0915fa9aa5ded511c596902e82694b69899ef4dce6348b4a19863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2164584080&rft_id=info:pmid/&rfr_iscdi=true |