Loading…

Modeling of dynamic systems with a variable number of phases in liquid–liquid equilibria

Modeling of dynamic systems with a variable number of phases is still a challenge, especially for multiple liquid phases. A common approach from literature derives first‐order Karush–Kuhn–Tucker (KKT) conditions of the Gibbs free energy minimization and relaxes these if a phase does not exist. It ai...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2019-02, Vol.65 (2), p.571-581
Main Authors: Ploch, Tobias, Glass, Moll, Bremen, Andreas M., Hannemann‐Tamás, Ralf, Mitsos, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3347-ff16912cc22c0915fa9aa5ded511c596902e82694b69899ef4dce6348b4a19863
cites cdi_FETCH-LOGICAL-c3347-ff16912cc22c0915fa9aa5ded511c596902e82694b69899ef4dce6348b4a19863
container_end_page 581
container_issue 2
container_start_page 571
container_title AIChE journal
container_volume 65
creator Ploch, Tobias
Glass, Moll
Bremen, Andreas M.
Hannemann‐Tamás, Ralf
Mitsos, Alexander
description Modeling of dynamic systems with a variable number of phases is still a challenge, especially for multiple liquid phases. A common approach from literature derives first‐order Karush–Kuhn–Tucker (KKT) conditions of the Gibbs free energy minimization and relaxes these if a phase does not exist. It aims at enabling dynamic simulation in all phase regimes of systems in vapor–liquid equilibrium by following a nonphysical continuous solution. In this work, we demonstrate that this continuous solution is not always possible in liquid–liquid equilibrium problems. The demonstration is done both theoretically and for illustrative examples. To overcome the demonstrated issues, we review the use of negative flash approach that allows negative molar amounts of nonexisting phases and propose a hybrid continuous formulation that explicitly assigns phase variables in the single‐phase regime and solves flash equations otherwise. Various dynamic case studies demonstrate the applicability and limitations of all three approaches. © 2018 American Institute of Chemical Engineers AIChE J, 65: 571–581, 2019
doi_str_mv 10.1002/aic.16447
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164584080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164584080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3347-ff16912cc22c0915fa9aa5ded511c596902e82694b69899ef4dce6348b4a19863</originalsourceid><addsrcrecordid>eNp1kMtOAyEUhonRxFpd-AYkrlxMCwxQWDaNlyY1bnTjhjAMWJq5tNCxmZ3v4Bv6JFLHrZtzy_efc_IDcI3RBCNEptqbCeaUzk7ACDM6y5hE7BSMEEI4SwN8Di5i3KSOzAQZgbentrSVb95h62DZN7r2BsY-7m0d4cHv11DDDx28LioLm64ubDiS27WONkLfwMrvOl9-f34NBbQpVr5Iiktw5nQV7dVfHoPX-7uXxWO2en5YLuarzOR5etA5zCUmxhBikMTMaak1K23JMDZMcomIFYRLWnAppLSOlsbynIqCaiwFz8fgZti7De2us3GvNm0XmnRSkWQFExQJlKjbgTKhjTFYp7bB1zr0CiN1tE4l69SvdYmdDuzBV7b_H1Tz5WJQ_AAhYHCW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164584080</pqid></control><display><type>article</type><title>Modeling of dynamic systems with a variable number of phases in liquid–liquid equilibria</title><source>Wiley</source><creator>Ploch, Tobias ; Glass, Moll ; Bremen, Andreas M. ; Hannemann‐Tamás, Ralf ; Mitsos, Alexander</creator><creatorcontrib>Ploch, Tobias ; Glass, Moll ; Bremen, Andreas M. ; Hannemann‐Tamás, Ralf ; Mitsos, Alexander</creatorcontrib><description>Modeling of dynamic systems with a variable number of phases is still a challenge, especially for multiple liquid phases. A common approach from literature derives first‐order Karush–Kuhn–Tucker (KKT) conditions of the Gibbs free energy minimization and relaxes these if a phase does not exist. It aims at enabling dynamic simulation in all phase regimes of systems in vapor–liquid equilibrium by following a nonphysical continuous solution. In this work, we demonstrate that this continuous solution is not always possible in liquid–liquid equilibrium problems. The demonstration is done both theoretically and for illustrative examples. To overcome the demonstrated issues, we review the use of negative flash approach that allows negative molar amounts of nonexisting phases and propose a hybrid continuous formulation that explicitly assigns phase variables in the single‐phase regime and solves flash equations otherwise. Various dynamic case studies demonstrate the applicability and limitations of all three approaches. © 2018 American Institute of Chemical Engineers AIChE J, 65: 571–581, 2019</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.16447</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Case studies ; Computer simulation ; dynamic simulation ; Dynamical systems ; Energy conservation ; Free energy ; Gibbs ; Gibbs free energy ; Liquid phases ; Liquid-liquid equilibrium ; Liquid-vapor equilibrium ; Modelling ; Organic chemistry ; phase change ; smooth ; VLLE</subject><ispartof>AIChE journal, 2019-02, Vol.65 (2), p.571-581</ispartof><rights>2018 American Institute of Chemical Engineers</rights><rights>2019 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3347-ff16912cc22c0915fa9aa5ded511c596902e82694b69899ef4dce6348b4a19863</citedby><cites>FETCH-LOGICAL-c3347-ff16912cc22c0915fa9aa5ded511c596902e82694b69899ef4dce6348b4a19863</cites><orcidid>0000-0003-0335-6566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ploch, Tobias</creatorcontrib><creatorcontrib>Glass, Moll</creatorcontrib><creatorcontrib>Bremen, Andreas M.</creatorcontrib><creatorcontrib>Hannemann‐Tamás, Ralf</creatorcontrib><creatorcontrib>Mitsos, Alexander</creatorcontrib><title>Modeling of dynamic systems with a variable number of phases in liquid–liquid equilibria</title><title>AIChE journal</title><description>Modeling of dynamic systems with a variable number of phases is still a challenge, especially for multiple liquid phases. A common approach from literature derives first‐order Karush–Kuhn–Tucker (KKT) conditions of the Gibbs free energy minimization and relaxes these if a phase does not exist. It aims at enabling dynamic simulation in all phase regimes of systems in vapor–liquid equilibrium by following a nonphysical continuous solution. In this work, we demonstrate that this continuous solution is not always possible in liquid–liquid equilibrium problems. The demonstration is done both theoretically and for illustrative examples. To overcome the demonstrated issues, we review the use of negative flash approach that allows negative molar amounts of nonexisting phases and propose a hybrid continuous formulation that explicitly assigns phase variables in the single‐phase regime and solves flash equations otherwise. Various dynamic case studies demonstrate the applicability and limitations of all three approaches. © 2018 American Institute of Chemical Engineers AIChE J, 65: 571–581, 2019</description><subject>Case studies</subject><subject>Computer simulation</subject><subject>dynamic simulation</subject><subject>Dynamical systems</subject><subject>Energy conservation</subject><subject>Free energy</subject><subject>Gibbs</subject><subject>Gibbs free energy</subject><subject>Liquid phases</subject><subject>Liquid-liquid equilibrium</subject><subject>Liquid-vapor equilibrium</subject><subject>Modelling</subject><subject>Organic chemistry</subject><subject>phase change</subject><subject>smooth</subject><subject>VLLE</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOAyEUhonRxFpd-AYkrlxMCwxQWDaNlyY1bnTjhjAMWJq5tNCxmZ3v4Bv6JFLHrZtzy_efc_IDcI3RBCNEptqbCeaUzk7ACDM6y5hE7BSMEEI4SwN8Di5i3KSOzAQZgbentrSVb95h62DZN7r2BsY-7m0d4cHv11DDDx28LioLm64ubDiS27WONkLfwMrvOl9-f34NBbQpVr5Iiktw5nQV7dVfHoPX-7uXxWO2en5YLuarzOR5etA5zCUmxhBikMTMaak1K23JMDZMcomIFYRLWnAppLSOlsbynIqCaiwFz8fgZti7De2us3GvNm0XmnRSkWQFExQJlKjbgTKhjTFYp7bB1zr0CiN1tE4l69SvdYmdDuzBV7b_H1Tz5WJQ_AAhYHCW</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Ploch, Tobias</creator><creator>Glass, Moll</creator><creator>Bremen, Andreas M.</creator><creator>Hannemann‐Tamás, Ralf</creator><creator>Mitsos, Alexander</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0335-6566</orcidid></search><sort><creationdate>201902</creationdate><title>Modeling of dynamic systems with a variable number of phases in liquid–liquid equilibria</title><author>Ploch, Tobias ; Glass, Moll ; Bremen, Andreas M. ; Hannemann‐Tamás, Ralf ; Mitsos, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3347-ff16912cc22c0915fa9aa5ded511c596902e82694b69899ef4dce6348b4a19863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Case studies</topic><topic>Computer simulation</topic><topic>dynamic simulation</topic><topic>Dynamical systems</topic><topic>Energy conservation</topic><topic>Free energy</topic><topic>Gibbs</topic><topic>Gibbs free energy</topic><topic>Liquid phases</topic><topic>Liquid-liquid equilibrium</topic><topic>Liquid-vapor equilibrium</topic><topic>Modelling</topic><topic>Organic chemistry</topic><topic>phase change</topic><topic>smooth</topic><topic>VLLE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ploch, Tobias</creatorcontrib><creatorcontrib>Glass, Moll</creatorcontrib><creatorcontrib>Bremen, Andreas M.</creatorcontrib><creatorcontrib>Hannemann‐Tamás, Ralf</creatorcontrib><creatorcontrib>Mitsos, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ploch, Tobias</au><au>Glass, Moll</au><au>Bremen, Andreas M.</au><au>Hannemann‐Tamás, Ralf</au><au>Mitsos, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of dynamic systems with a variable number of phases in liquid–liquid equilibria</atitle><jtitle>AIChE journal</jtitle><date>2019-02</date><risdate>2019</risdate><volume>65</volume><issue>2</issue><spage>571</spage><epage>581</epage><pages>571-581</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Modeling of dynamic systems with a variable number of phases is still a challenge, especially for multiple liquid phases. A common approach from literature derives first‐order Karush–Kuhn–Tucker (KKT) conditions of the Gibbs free energy minimization and relaxes these if a phase does not exist. It aims at enabling dynamic simulation in all phase regimes of systems in vapor–liquid equilibrium by following a nonphysical continuous solution. In this work, we demonstrate that this continuous solution is not always possible in liquid–liquid equilibrium problems. The demonstration is done both theoretically and for illustrative examples. To overcome the demonstrated issues, we review the use of negative flash approach that allows negative molar amounts of nonexisting phases and propose a hybrid continuous formulation that explicitly assigns phase variables in the single‐phase regime and solves flash equations otherwise. Various dynamic case studies demonstrate the applicability and limitations of all three approaches. © 2018 American Institute of Chemical Engineers AIChE J, 65: 571–581, 2019</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.16447</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0335-6566</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2019-02, Vol.65 (2), p.571-581
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2164584080
source Wiley
subjects Case studies
Computer simulation
dynamic simulation
Dynamical systems
Energy conservation
Free energy
Gibbs
Gibbs free energy
Liquid phases
Liquid-liquid equilibrium
Liquid-vapor equilibrium
Modelling
Organic chemistry
phase change
smooth
VLLE
title Modeling of dynamic systems with a variable number of phases in liquid–liquid equilibria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20dynamic%20systems%20with%20a%20variable%20number%20of%20phases%20in%20liquid%E2%80%93liquid%20equilibria&rft.jtitle=AIChE%20journal&rft.au=Ploch,%20Tobias&rft.date=2019-02&rft.volume=65&rft.issue=2&rft.spage=571&rft.epage=581&rft.pages=571-581&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.16447&rft_dat=%3Cproquest_cross%3E2164584080%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3347-ff16912cc22c0915fa9aa5ded511c596902e82694b69899ef4dce6348b4a19863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2164584080&rft_id=info:pmid/&rfr_iscdi=true