Loading…

The Helfrich boundary value problem

We construct a branched Helfrich immersion satisfying Dirichlet boundary conditions. The number of branch points is finite. We proceed by a variational argument and hence examine the Helfrich energy for oriented varifolds. The main contribution of this paper is a lower semicontinuity result with res...

Full description

Saved in:
Bibliographic Details
Published in:Calculus of variations and partial differential equations 2019-02, Vol.58 (1), p.1-26, Article 34
Main Author: Eichmann, Sascha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-20fb48a47df90ba33f537ccc3f9c982346a233bbdc3507ae684c9346242910613
cites cdi_FETCH-LOGICAL-c316t-20fb48a47df90ba33f537ccc3f9c982346a233bbdc3507ae684c9346242910613
container_end_page 26
container_issue 1
container_start_page 1
container_title Calculus of variations and partial differential equations
container_volume 58
creator Eichmann, Sascha
description We construct a branched Helfrich immersion satisfying Dirichlet boundary conditions. The number of branch points is finite. We proceed by a variational argument and hence examine the Helfrich energy for oriented varifolds. The main contribution of this paper is a lower semicontinuity result with respect to oriented varifold convergence for the Helfrich energy and a minimising sequence. For arbitrary sequences this is false by a counterexample of Große-Brauckmann.
doi_str_mv 10.1007/s00526-018-1468-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164629881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164629881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-20fb48a47df90ba33f537ccc3f9c982346a233bbdc3507ae684c9346242910613</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMouFZ_gLeFnqOTj80mRylqCwUv9RySbGJbtrs16Ur992ZZwZOngeF53xkehO4JPBCA-jEBVFRgIBITLiQ-X6CCcEYxSFZdogIU55gKoa7RTUp7AFJJygs032x9ufRtiDu3LW0_dI2J3-WXaQdfHmNvW3-4RVfBtMnf_c4Zen953iyWeP32ulo8rbFjRJwwhWC5NLxuggJrGAsVq51zLCinJGVcGMqYtY1jFdTGC8mdylvKqSIgCJuh-dSb734OPp30vh9il09qSkQGlZQjRSbKxT6l6IM-xt0hP60J6NGFnlzo7EKPLvQ5Z-iUSZntPnz8a_4_9AOurl-i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164629881</pqid></control><display><type>article</type><title>The Helfrich boundary value problem</title><source>Springer Link</source><creator>Eichmann, Sascha</creator><creatorcontrib>Eichmann, Sascha</creatorcontrib><description>We construct a branched Helfrich immersion satisfying Dirichlet boundary conditions. The number of branch points is finite. We proceed by a variational argument and hence examine the Helfrich energy for oriented varifolds. The main contribution of this paper is a lower semicontinuity result with respect to oriented varifold convergence for the Helfrich energy and a minimising sequence. For arbitrary sequences this is false by a counterexample of Große-Brauckmann.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-018-1468-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Boundary conditions ; Boundary value problems ; Calculus of Variations and Optimal Control; Optimization ; Control ; Dirichlet problem ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Submerging ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2019-02, Vol.58 (1), p.1-26, Article 34</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-20fb48a47df90ba33f537ccc3f9c982346a233bbdc3507ae684c9346242910613</citedby><cites>FETCH-LOGICAL-c316t-20fb48a47df90ba33f537ccc3f9c982346a233bbdc3507ae684c9346242910613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Eichmann, Sascha</creatorcontrib><title>The Helfrich boundary value problem</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We construct a branched Helfrich immersion satisfying Dirichlet boundary conditions. The number of branch points is finite. We proceed by a variational argument and hence examine the Helfrich energy for oriented varifolds. The main contribution of this paper is a lower semicontinuity result with respect to oriented varifold convergence for the Helfrich energy and a minimising sequence. For arbitrary sequences this is false by a counterexample of Große-Brauckmann.</description><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dirichlet problem</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Submerging</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMouFZ_gLeFnqOTj80mRylqCwUv9RySbGJbtrs16Ur992ZZwZOngeF53xkehO4JPBCA-jEBVFRgIBITLiQ-X6CCcEYxSFZdogIU55gKoa7RTUp7AFJJygs032x9ufRtiDu3LW0_dI2J3-WXaQdfHmNvW3-4RVfBtMnf_c4Zen953iyWeP32ulo8rbFjRJwwhWC5NLxuggJrGAsVq51zLCinJGVcGMqYtY1jFdTGC8mdylvKqSIgCJuh-dSb734OPp30vh9il09qSkQGlZQjRSbKxT6l6IM-xt0hP60J6NGFnlzo7EKPLvQ5Z-iUSZntPnz8a_4_9AOurl-i</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Eichmann, Sascha</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20190201</creationdate><title>The Helfrich boundary value problem</title><author>Eichmann, Sascha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-20fb48a47df90ba33f537ccc3f9c982346a233bbdc3507ae684c9346242910613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dirichlet problem</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Submerging</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eichmann, Sascha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eichmann, Sascha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Helfrich boundary value problem</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>58</volume><issue>1</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>34</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We construct a branched Helfrich immersion satisfying Dirichlet boundary conditions. The number of branch points is finite. We proceed by a variational argument and hence examine the Helfrich energy for oriented varifolds. The main contribution of this paper is a lower semicontinuity result with respect to oriented varifold convergence for the Helfrich energy and a minimising sequence. For arbitrary sequences this is false by a counterexample of Große-Brauckmann.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-018-1468-x</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2019-02, Vol.58 (1), p.1-26, Article 34
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2164629881
source Springer Link
subjects Analysis
Boundary conditions
Boundary value problems
Calculus of Variations and Optimal Control
Optimization
Control
Dirichlet problem
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Submerging
Systems Theory
Theoretical
title The Helfrich boundary value problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Helfrich%20boundary%20value%20problem&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Eichmann,%20Sascha&rft.date=2019-02-01&rft.volume=58&rft.issue=1&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=34&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-018-1468-x&rft_dat=%3Cproquest_cross%3E2164629881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-20fb48a47df90ba33f537ccc3f9c982346a233bbdc3507ae684c9346242910613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2164629881&rft_id=info:pmid/&rfr_iscdi=true