Loading…
The Helfrich boundary value problem
We construct a branched Helfrich immersion satisfying Dirichlet boundary conditions. The number of branch points is finite. We proceed by a variational argument and hence examine the Helfrich energy for oriented varifolds. The main contribution of this paper is a lower semicontinuity result with res...
Saved in:
Published in: | Calculus of variations and partial differential equations 2019-02, Vol.58 (1), p.1-26, Article 34 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-20fb48a47df90ba33f537ccc3f9c982346a233bbdc3507ae684c9346242910613 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-20fb48a47df90ba33f537ccc3f9c982346a233bbdc3507ae684c9346242910613 |
container_end_page | 26 |
container_issue | 1 |
container_start_page | 1 |
container_title | Calculus of variations and partial differential equations |
container_volume | 58 |
creator | Eichmann, Sascha |
description | We construct a branched Helfrich immersion satisfying Dirichlet boundary conditions. The number of branch points is finite. We proceed by a variational argument and hence examine the Helfrich energy for oriented varifolds. The main contribution of this paper is a lower semicontinuity result with respect to oriented varifold convergence for the Helfrich energy and a minimising sequence. For arbitrary sequences this is false by a counterexample of Große-Brauckmann. |
doi_str_mv | 10.1007/s00526-018-1468-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164629881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164629881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-20fb48a47df90ba33f537ccc3f9c982346a233bbdc3507ae684c9346242910613</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMouFZ_gLeFnqOTj80mRylqCwUv9RySbGJbtrs16Ur992ZZwZOngeF53xkehO4JPBCA-jEBVFRgIBITLiQ-X6CCcEYxSFZdogIU55gKoa7RTUp7AFJJygs032x9ufRtiDu3LW0_dI2J3-WXaQdfHmNvW3-4RVfBtMnf_c4Zen953iyWeP32ulo8rbFjRJwwhWC5NLxuggJrGAsVq51zLCinJGVcGMqYtY1jFdTGC8mdylvKqSIgCJuh-dSb734OPp30vh9il09qSkQGlZQjRSbKxT6l6IM-xt0hP60J6NGFnlzo7EKPLvQ5Z-iUSZntPnz8a_4_9AOurl-i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164629881</pqid></control><display><type>article</type><title>The Helfrich boundary value problem</title><source>Springer Link</source><creator>Eichmann, Sascha</creator><creatorcontrib>Eichmann, Sascha</creatorcontrib><description>We construct a branched Helfrich immersion satisfying Dirichlet boundary conditions. The number of branch points is finite. We proceed by a variational argument and hence examine the Helfrich energy for oriented varifolds. The main contribution of this paper is a lower semicontinuity result with respect to oriented varifold convergence for the Helfrich energy and a minimising sequence. For arbitrary sequences this is false by a counterexample of Große-Brauckmann.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-018-1468-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Boundary conditions ; Boundary value problems ; Calculus of Variations and Optimal Control; Optimization ; Control ; Dirichlet problem ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Submerging ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2019-02, Vol.58 (1), p.1-26, Article 34</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-20fb48a47df90ba33f537ccc3f9c982346a233bbdc3507ae684c9346242910613</citedby><cites>FETCH-LOGICAL-c316t-20fb48a47df90ba33f537ccc3f9c982346a233bbdc3507ae684c9346242910613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Eichmann, Sascha</creatorcontrib><title>The Helfrich boundary value problem</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We construct a branched Helfrich immersion satisfying Dirichlet boundary conditions. The number of branch points is finite. We proceed by a variational argument and hence examine the Helfrich energy for oriented varifolds. The main contribution of this paper is a lower semicontinuity result with respect to oriented varifold convergence for the Helfrich energy and a minimising sequence. For arbitrary sequences this is false by a counterexample of Große-Brauckmann.</description><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dirichlet problem</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Submerging</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMouFZ_gLeFnqOTj80mRylqCwUv9RySbGJbtrs16Ur992ZZwZOngeF53xkehO4JPBCA-jEBVFRgIBITLiQ-X6CCcEYxSFZdogIU55gKoa7RTUp7AFJJygs032x9ufRtiDu3LW0_dI2J3-WXaQdfHmNvW3-4RVfBtMnf_c4Zen953iyWeP32ulo8rbFjRJwwhWC5NLxuggJrGAsVq51zLCinJGVcGMqYtY1jFdTGC8mdylvKqSIgCJuh-dSb734OPp30vh9il09qSkQGlZQjRSbKxT6l6IM-xt0hP60J6NGFnlzo7EKPLvQ5Z-iUSZntPnz8a_4_9AOurl-i</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Eichmann, Sascha</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20190201</creationdate><title>The Helfrich boundary value problem</title><author>Eichmann, Sascha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-20fb48a47df90ba33f537ccc3f9c982346a233bbdc3507ae684c9346242910613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dirichlet problem</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Submerging</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eichmann, Sascha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eichmann, Sascha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Helfrich boundary value problem</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>58</volume><issue>1</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>34</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We construct a branched Helfrich immersion satisfying Dirichlet boundary conditions. The number of branch points is finite. We proceed by a variational argument and hence examine the Helfrich energy for oriented varifolds. The main contribution of this paper is a lower semicontinuity result with respect to oriented varifold convergence for the Helfrich energy and a minimising sequence. For arbitrary sequences this is false by a counterexample of Große-Brauckmann.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-018-1468-x</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2019-02, Vol.58 (1), p.1-26, Article 34 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2164629881 |
source | Springer Link |
subjects | Analysis Boundary conditions Boundary value problems Calculus of Variations and Optimal Control Optimization Control Dirichlet problem Mathematical and Computational Physics Mathematics Mathematics and Statistics Submerging Systems Theory Theoretical |
title | The Helfrich boundary value problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Helfrich%20boundary%20value%20problem&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Eichmann,%20Sascha&rft.date=2019-02-01&rft.volume=58&rft.issue=1&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=34&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-018-1468-x&rft_dat=%3Cproquest_cross%3E2164629881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-20fb48a47df90ba33f537ccc3f9c982346a233bbdc3507ae684c9346242910613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2164629881&rft_id=info:pmid/&rfr_iscdi=true |