Loading…

A Hierarchical Self-Adaptive Data-Analytics Method for Real-Time Power System Short-Term Voltage Stability Assessment

As one of the most complex and largest dynamic industrial systems, a modern power grid envisages the wide-area measurement protection and control (WAMPAC) system as the grid sensing backbone to enhance security, reliability, and resiliency. However, based on the massive wide-area measurement data, h...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2019-01, Vol.15 (1), p.74-84
Main Authors: Zhang, Yuchen, Xu, Yan, Dong, Zhao Yang, Zhang, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-8a338307d6b7e9578865ed6dfeacb668e09aaa6651ea66dddeb7710dc258fd283
cites cdi_FETCH-LOGICAL-c380t-8a338307d6b7e9578865ed6dfeacb668e09aaa6651ea66dddeb7710dc258fd283
container_end_page 84
container_issue 1
container_start_page 74
container_title IEEE transactions on industrial informatics
container_volume 15
creator Zhang, Yuchen
Xu, Yan
Dong, Zhao Yang
Zhang, Rui
description As one of the most complex and largest dynamic industrial systems, a modern power grid envisages the wide-area measurement protection and control (WAMPAC) system as the grid sensing backbone to enhance security, reliability, and resiliency. However, based on the massive wide-area measurement data, how to realize real-time short-term voltage stability (STVS) assessment is an essential yet challenging problem. This paper proposes a hierarchical and self-adaptive data-analytics method for real-time STVS assessment covering both the voltage instability and the fault-induced delayed voltage recovery phenomenon. Based on a strategically designed ensemble-based randomized learning model, the STVS assessment is achieved sequentially and self-adaptively. Besides, the assessment accuracy and the earliness are simultaneously optimized through the multiobjective programming. The proposed method has been tested on a benchmark power system, and its exceptional assessment accuracy, speed, and comprehensiveness are demonstrated by comparing with existing methods.
doi_str_mv 10.1109/TII.2018.2829818
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2164841487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8345652</ieee_id><sourcerecordid>2164841487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-8a338307d6b7e9578865ed6dfeacb668e09aaa6651ea66dddeb7710dc258fd283</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKd3wUvAc2bSNGl6LPPHBhPFVq8lbV5dRrvOJFP639sx8fK-7_D5PngfhK4ZnTFG07tiuZxFlKlZpKJUMXWCJiyNGaFU0NNxF4IRHlF-ji6831DKE8rTCdpneGHBaVevba1bnEPbkMzoXbDfgO910CTb6nYItvb4GcK6N7jpHX4D3ZLCdoBf-x9wOB98gA7n694FUoDr8EffBv0JOA-6sq0NA868B-872IZLdNbo1sPVX07R--NDMV-Q1cvTcp6tSM0VDURpzhWniZFVAqlIlJICjDQN6LqSUgFNtdZSCgbjNMZAlSSMmjoSqjGR4lN0e7y7c_3XHnwoN_3ejf_4MmIyVjGLVTJS9EjVrvfeQVPunO20G0pGy4PccpRbHuSWf3LHys2xYgHgH1c8FlJE_BegUnZ9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164841487</pqid></control><display><type>article</type><title>A Hierarchical Self-Adaptive Data-Analytics Method for Real-Time Power System Short-Term Voltage Stability Assessment</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Yuchen ; Xu, Yan ; Dong, Zhao Yang ; Zhang, Rui</creator><creatorcontrib>Zhang, Yuchen ; Xu, Yan ; Dong, Zhao Yang ; Zhang, Rui</creatorcontrib><description>As one of the most complex and largest dynamic industrial systems, a modern power grid envisages the wide-area measurement protection and control (WAMPAC) system as the grid sensing backbone to enhance security, reliability, and resiliency. However, based on the massive wide-area measurement data, how to realize real-time short-term voltage stability (STVS) assessment is an essential yet challenging problem. This paper proposes a hierarchical and self-adaptive data-analytics method for real-time STVS assessment covering both the voltage instability and the fault-induced delayed voltage recovery phenomenon. Based on a strategically designed ensemble-based randomized learning model, the STVS assessment is achieved sequentially and self-adaptively. Besides, the assessment accuracy and the earliness are simultaneously optimized through the multiobjective programming. The proposed method has been tested on a benchmark power system, and its exceptional assessment accuracy, speed, and comprehensiveness are demonstrated by comparing with existing methods.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2829818</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive systems ; Analytics ; Data analysis ; Data-analytics ; Dynamic stability ; Electric potential ; ensemble learning ; extreme learning machine ; Indexes ; Mathematical programming ; multiobjective programming ; Multiple objective analysis ; Power system dynamics ; Power system stability ; Real time ; Real-time systems ; Reliability ; short-term voltage stability (STVS) ; smart grid ; Stability ; Stability analysis ; Stability criteria ; Voltage control ; Voltage stability</subject><ispartof>IEEE transactions on industrial informatics, 2019-01, Vol.15 (1), p.74-84</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-8a338307d6b7e9578865ed6dfeacb668e09aaa6651ea66dddeb7710dc258fd283</citedby><cites>FETCH-LOGICAL-c380t-8a338307d6b7e9578865ed6dfeacb668e09aaa6651ea66dddeb7710dc258fd283</cites><orcidid>0000-0001-9659-0858 ; 0000-0002-1211-2427 ; 0000-0002-0503-183X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8345652$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Zhang, Yuchen</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Dong, Zhao Yang</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><title>A Hierarchical Self-Adaptive Data-Analytics Method for Real-Time Power System Short-Term Voltage Stability Assessment</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>As one of the most complex and largest dynamic industrial systems, a modern power grid envisages the wide-area measurement protection and control (WAMPAC) system as the grid sensing backbone to enhance security, reliability, and resiliency. However, based on the massive wide-area measurement data, how to realize real-time short-term voltage stability (STVS) assessment is an essential yet challenging problem. This paper proposes a hierarchical and self-adaptive data-analytics method for real-time STVS assessment covering both the voltage instability and the fault-induced delayed voltage recovery phenomenon. Based on a strategically designed ensemble-based randomized learning model, the STVS assessment is achieved sequentially and self-adaptively. Besides, the assessment accuracy and the earliness are simultaneously optimized through the multiobjective programming. The proposed method has been tested on a benchmark power system, and its exceptional assessment accuracy, speed, and comprehensiveness are demonstrated by comparing with existing methods.</description><subject>Adaptive systems</subject><subject>Analytics</subject><subject>Data analysis</subject><subject>Data-analytics</subject><subject>Dynamic stability</subject><subject>Electric potential</subject><subject>ensemble learning</subject><subject>extreme learning machine</subject><subject>Indexes</subject><subject>Mathematical programming</subject><subject>multiobjective programming</subject><subject>Multiple objective analysis</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Reliability</subject><subject>short-term voltage stability (STVS)</subject><subject>smart grid</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Voltage control</subject><subject>Voltage stability</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUx4MoOKd3wUvAc2bSNGl6LPPHBhPFVq8lbV5dRrvOJFP639sx8fK-7_D5PngfhK4ZnTFG07tiuZxFlKlZpKJUMXWCJiyNGaFU0NNxF4IRHlF-ji6831DKE8rTCdpneGHBaVevba1bnEPbkMzoXbDfgO910CTb6nYItvb4GcK6N7jpHX4D3ZLCdoBf-x9wOB98gA7n694FUoDr8EffBv0JOA-6sq0NA868B-872IZLdNbo1sPVX07R--NDMV-Q1cvTcp6tSM0VDURpzhWniZFVAqlIlJICjDQN6LqSUgFNtdZSCgbjNMZAlSSMmjoSqjGR4lN0e7y7c_3XHnwoN_3ejf_4MmIyVjGLVTJS9EjVrvfeQVPunO20G0pGy4PccpRbHuSWf3LHys2xYgHgH1c8FlJE_BegUnZ9</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Zhang, Yuchen</creator><creator>Xu, Yan</creator><creator>Dong, Zhao Yang</creator><creator>Zhang, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9659-0858</orcidid><orcidid>https://orcid.org/0000-0002-1211-2427</orcidid><orcidid>https://orcid.org/0000-0002-0503-183X</orcidid></search><sort><creationdate>201901</creationdate><title>A Hierarchical Self-Adaptive Data-Analytics Method for Real-Time Power System Short-Term Voltage Stability Assessment</title><author>Zhang, Yuchen ; Xu, Yan ; Dong, Zhao Yang ; Zhang, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-8a338307d6b7e9578865ed6dfeacb668e09aaa6651ea66dddeb7710dc258fd283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive systems</topic><topic>Analytics</topic><topic>Data analysis</topic><topic>Data-analytics</topic><topic>Dynamic stability</topic><topic>Electric potential</topic><topic>ensemble learning</topic><topic>extreme learning machine</topic><topic>Indexes</topic><topic>Mathematical programming</topic><topic>multiobjective programming</topic><topic>Multiple objective analysis</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Reliability</topic><topic>short-term voltage stability (STVS)</topic><topic>smart grid</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Voltage control</topic><topic>Voltage stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuchen</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Dong, Zhao Yang</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuchen</au><au>Xu, Yan</au><au>Dong, Zhao Yang</au><au>Zhang, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hierarchical Self-Adaptive Data-Analytics Method for Real-Time Power System Short-Term Voltage Stability Assessment</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-01</date><risdate>2019</risdate><volume>15</volume><issue>1</issue><spage>74</spage><epage>84</epage><pages>74-84</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>As one of the most complex and largest dynamic industrial systems, a modern power grid envisages the wide-area measurement protection and control (WAMPAC) system as the grid sensing backbone to enhance security, reliability, and resiliency. However, based on the massive wide-area measurement data, how to realize real-time short-term voltage stability (STVS) assessment is an essential yet challenging problem. This paper proposes a hierarchical and self-adaptive data-analytics method for real-time STVS assessment covering both the voltage instability and the fault-induced delayed voltage recovery phenomenon. Based on a strategically designed ensemble-based randomized learning model, the STVS assessment is achieved sequentially and self-adaptively. Besides, the assessment accuracy and the earliness are simultaneously optimized through the multiobjective programming. The proposed method has been tested on a benchmark power system, and its exceptional assessment accuracy, speed, and comprehensiveness are demonstrated by comparing with existing methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2829818</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9659-0858</orcidid><orcidid>https://orcid.org/0000-0002-1211-2427</orcidid><orcidid>https://orcid.org/0000-0002-0503-183X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2019-01, Vol.15 (1), p.74-84
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2164841487
source IEEE Electronic Library (IEL) Journals
subjects Adaptive systems
Analytics
Data analysis
Data-analytics
Dynamic stability
Electric potential
ensemble learning
extreme learning machine
Indexes
Mathematical programming
multiobjective programming
Multiple objective analysis
Power system dynamics
Power system stability
Real time
Real-time systems
Reliability
short-term voltage stability (STVS)
smart grid
Stability
Stability analysis
Stability criteria
Voltage control
Voltage stability
title A Hierarchical Self-Adaptive Data-Analytics Method for Real-Time Power System Short-Term Voltage Stability Assessment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hierarchical%20Self-Adaptive%20Data-Analytics%20Method%20for%20Real-Time%20Power%20System%20Short-Term%20Voltage%20Stability%20Assessment&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zhang,%20Yuchen&rft.date=2019-01&rft.volume=15&rft.issue=1&rft.spage=74&rft.epage=84&rft.pages=74-84&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2829818&rft_dat=%3Cproquest_ieee_%3E2164841487%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-8a338307d6b7e9578865ed6dfeacb668e09aaa6651ea66dddeb7710dc258fd283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2164841487&rft_id=info:pmid/&rft_ieee_id=8345652&rfr_iscdi=true