Loading…

The effects of a compatibiliser on processing, tensile properties and morphology of polystyrene (PS)/styrene–butadiene rubber (SBR)/wollastonite composites

Thermoplastic elastomer composites of polystyrene (PS) blended with styrene–butadiene rubber (SBR)–filled wollastonite were prepared using a laboratory scale internal mixer. The compatibiliser used in this study was maleic anhydride (MAH). The torque developments, morphology, and mechanical properti...

Full description

Saved in:
Bibliographic Details
Published in:Polymers & polymer composites 2018-10, Vol.26 (8-9), p.454-460
Main Authors: Abdul Karim, Ahmad Fikri, Ismail, Hanafi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermoplastic elastomer composites of polystyrene (PS) blended with styrene–butadiene rubber (SBR)–filled wollastonite were prepared using a laboratory scale internal mixer. The compatibiliser used in this study was maleic anhydride (MAH). The torque developments, morphology, and mechanical properties such as tensile strength, elongation at break, Young’s modulus and impact strength were studied. PS/SBR/wollastonite composites with the addition of MAH had higher torque than PS/SBR/wollastonite composites without MAH. Tensile strength, impact strength and elongation at break were reduced by increasing filler loading, both for composites with and without MAH. Composites with MAH had higher tensile strength but lower impact strength and elongation at break as compared with composites without MAH. The Young’s modulus increased with the wollastonite loading, whereas at a similar wollastonite loading, composites with MAH exhibited higher values of Young’s modulus than composites without MAH. Scanning electron microscopy on fracture surfaces showed better filler–matrix adhesion for composites with MAH.
ISSN:0967-3911
1478-2391
DOI:10.1177/0967391118809436