Loading…

In vitro and in vivo investigation on biodegradable Mg-Li-Ca alloys for bone implant application

Magnesium alloys show promise for application in orthopedic implants, owing to their biodegradability and biocompatibility. In the present study, ternary Mg-(3.5, 6.5 wt%) Li-(0.2, 0.5, 1.0 wt%) Ca alloys were developed. Their mechanical strength, corrosion behavior and cytocompatibility were studie...

Full description

Saved in:
Bibliographic Details
Published in:Science China materials 2019-02, Vol.62 (2), p.256-272
Main Authors: Xia, Dandan, Liu, Yang, Wang, Siyi, Zeng, Rong-Chang, Liu, Yunsong, Zheng, Yufeng, Zhou, Yongsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magnesium alloys show promise for application in orthopedic implants, owing to their biodegradability and biocompatibility. In the present study, ternary Mg-(3.5, 6.5 wt%) Li-(0.2, 0.5, 1.0 wt%) Ca alloys were developed. Their mechanical strength, corrosion behavior and cytocompatibility were studied. These alloys showed improved mechanical strength than pure Mg and exhibited suitable corrosion resistance. Furthermore, Mg-3.5Li-0.5Ca alloys with the best in vitro performance were implanted intramedullary into the femurs of mice for 2 and 8 weeks. In vivo results revealed a significant increase in cortical bone thickness around the Mg-3.5Li-0.5Ca alloy rods, without causing any adverse effects. Western blotting and immunofluorescence staining of β-catenin illustrated that Mg-3.5Li-0.5Ca alloy extracts induced osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMMSCs) through the canonical Wnt/β-catenin pathway. Our studies demonstrate that Mg-3.5Li-0.5Ca alloys hold much promise as candidates for the facilitation of bone implant application.
ISSN:2095-8226
2199-4501
DOI:10.1007/s40843-018-9293-8