Loading…
Terahertz read-only multi-order nonvolatile rewritable photo-memory based on indium oxide nanoparticles
We investigate terahertz (THz) read-only multi-order nonvolatile rewritable photo-memory based on indium oxide (In2O3) nanoparticles. Optical excitation of an In2O3/quartz sample increases its conductivity, which attenuates its THz transmission. When the optical excitation is terminated, the modulat...
Saved in:
Published in: | Applied physics letters 2019-01, Vol.114 (1) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate terahertz (THz) read-only multi-order nonvolatile rewritable photo-memory based on indium oxide (In2O3) nanoparticles. Optical excitation of an In2O3/quartz sample increases its conductivity, which attenuates its THz transmission. When the optical excitation is terminated, the modulated THz transmission can recover back to its original value in air. However, the THz transmission shows no obvious change over a long-term when In2O3/quartz is encapsulated in an inert gas (nitrogen). Multi-order nonvolatile digital information storage is obtained at different light intensities, and the photo-memory can be rewritten after thermal annealing. Different THz transmissions are used as coded signal units, which are programmed to store information. These results show that THz read-only multi-level nonvolatile rewritable photo-memory can be realized. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5051029 |