Loading…

IRREDUCIBLE AUTOMORPHISMS OF $F_{n}$ HAVE NORTH–SOUTH DYNAMICS ON COMPACTIFIED OUTER SPACE

We show that if an automorphism of a non-abelian free group $F_n$ is irreducible with irreducible powers, it acts on the boundary of Culler–Vogtmann’s outer space with north–south dynamics: there are two fixed points, one attracting and one repelling, and orbits accumulate only on these points. The...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Institute of Mathematics of Jussieu 2003-01, Vol.2 (1), p.59-72
Main Authors: Levitt, Gilbert, Lustig, Martin
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1611-d0c8553069e2a49a24afd42ca45e24be7027a57f323ddef0e47b901d5a0980d63
cites
container_end_page 72
container_issue 1
container_start_page 59
container_title Journal of the Institute of Mathematics of Jussieu
container_volume 2
creator Levitt, Gilbert
Lustig, Martin
description We show that if an automorphism of a non-abelian free group $F_n$ is irreducible with irreducible powers, it acts on the boundary of Culler–Vogtmann’s outer space with north–south dynamics: there are two fixed points, one attracting and one repelling, and orbits accumulate only on these points. The main new tool we use is the equivariant assignment of a point $Q(X)$ to any end $X\in\partial F_n$, given an action of $F_n$ on an $\bm{R}$-tree $T$ with trivial arc stabilizers; this point $Q(X)$ may be in $T$, or in its metric completion, or in its boundary. AMS 2000 Mathematics subject classification: Primary 20F65; 20E05; 20E08
doi_str_mv 10.1017/S1474748003000033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_216606681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1474748003000033</cupid><sourcerecordid>1400928091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1611-d0c8553069e2a49a24afd42ca45e24be7027a57f323ddef0e47b901d5a0980d63</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWv0B3hbpNTr7yCY5xjQxgaYpeQiCELbJRlrsK7EHEcH_4D_0l7i1BQ_izGGG7zUwCF0SuCZArJuMcEu3DcBAF2NHqKch02AaOP7ZubHjT9FZ180BqKAm6aHHKE39YeFFtyMfu0WexEk6CaMsznAS4EFQvi3fBzh07308TtI8_Pr4zJIiD_HwYezGkadlY-wl8cT18iiI_CHWrJ_iTAP-OTpp5HOnLg6zj4rAz73QGCV3keeOjIoIQowaKts0GQhHUckdSblsak4ryU1F-VRZQC1pWg2jrK5VA4pbUwdIbUpwbKgF66Orfe66XW22qnsp56ttu9QnS0qEACFsokVkL6raVde1qinX7Wwh29eSQLn7Yfnnh9rDDh65mLaz-kn9Jv_v-gYRIWty</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216606681</pqid></control><display><type>article</type><title>IRREDUCIBLE AUTOMORPHISMS OF $F_{n}$ HAVE NORTH–SOUTH DYNAMICS ON COMPACTIFIED OUTER SPACE</title><source>Cambridge Journals Online</source><creator>Levitt, Gilbert ; Lustig, Martin</creator><creatorcontrib>Levitt, Gilbert ; Lustig, Martin</creatorcontrib><description>We show that if an automorphism of a non-abelian free group $F_n$ is irreducible with irreducible powers, it acts on the boundary of Culler–Vogtmann’s outer space with north–south dynamics: there are two fixed points, one attracting and one repelling, and orbits accumulate only on these points. The main new tool we use is the equivariant assignment of a point $Q(X)$ to any end $X\in\partial F_n$, given an action of $F_n$ on an $\bm{R}$-tree $T$ with trivial arc stabilizers; this point $Q(X)$ may be in $T$, or in its metric completion, or in its boundary. AMS 2000 Mathematics subject classification: Primary 20F65; 20E05; 20E08</description><identifier>ISSN: 1474-7480</identifier><identifier>EISSN: 1475-3030</identifier><identifier>DOI: 10.1017/S1474748003000033</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Journal of the Institute of Mathematics of Jussieu, 2003-01, Vol.2 (1), p.59-72</ispartof><rights>2003 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1611-d0c8553069e2a49a24afd42ca45e24be7027a57f323ddef0e47b901d5a0980d63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1474748003000033/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,72703</link.rule.ids></links><search><creatorcontrib>Levitt, Gilbert</creatorcontrib><creatorcontrib>Lustig, Martin</creatorcontrib><title>IRREDUCIBLE AUTOMORPHISMS OF $F_{n}$ HAVE NORTH–SOUTH DYNAMICS ON COMPACTIFIED OUTER SPACE</title><title>Journal of the Institute of Mathematics of Jussieu</title><addtitle>J. Inst. Math. Jussieu</addtitle><description>We show that if an automorphism of a non-abelian free group $F_n$ is irreducible with irreducible powers, it acts on the boundary of Culler–Vogtmann’s outer space with north–south dynamics: there are two fixed points, one attracting and one repelling, and orbits accumulate only on these points. The main new tool we use is the equivariant assignment of a point $Q(X)$ to any end $X\in\partial F_n$, given an action of $F_n$ on an $\bm{R}$-tree $T$ with trivial arc stabilizers; this point $Q(X)$ may be in $T$, or in its metric completion, or in its boundary. AMS 2000 Mathematics subject classification: Primary 20F65; 20E05; 20E08</description><issn>1474-7480</issn><issn>1475-3030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBWv0B3hbpNTr7yCY5xjQxgaYpeQiCELbJRlrsK7EHEcH_4D_0l7i1BQ_izGGG7zUwCF0SuCZArJuMcEu3DcBAF2NHqKch02AaOP7ZubHjT9FZ180BqKAm6aHHKE39YeFFtyMfu0WexEk6CaMsznAS4EFQvi3fBzh07308TtI8_Pr4zJIiD_HwYezGkadlY-wl8cT18iiI_CHWrJ_iTAP-OTpp5HOnLg6zj4rAz73QGCV3keeOjIoIQowaKts0GQhHUckdSblsak4ryU1F-VRZQC1pWg2jrK5VA4pbUwdIbUpwbKgF66Orfe66XW22qnsp56ttu9QnS0qEACFsokVkL6raVde1qinX7Wwh29eSQLn7Yfnnh9rDDh65mLaz-kn9Jv_v-gYRIWty</recordid><startdate>200301</startdate><enddate>200301</enddate><creator>Levitt, Gilbert</creator><creator>Lustig, Martin</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200301</creationdate><title>IRREDUCIBLE AUTOMORPHISMS OF $F_{n}$ HAVE NORTH–SOUTH DYNAMICS ON COMPACTIFIED OUTER SPACE</title><author>Levitt, Gilbert ; Lustig, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1611-d0c8553069e2a49a24afd42ca45e24be7027a57f323ddef0e47b901d5a0980d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levitt, Gilbert</creatorcontrib><creatorcontrib>Lustig, Martin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>test</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levitt, Gilbert</au><au>Lustig, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IRREDUCIBLE AUTOMORPHISMS OF $F_{n}$ HAVE NORTH–SOUTH DYNAMICS ON COMPACTIFIED OUTER SPACE</atitle><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle><addtitle>J. Inst. Math. Jussieu</addtitle><date>2003-01</date><risdate>2003</risdate><volume>2</volume><issue>1</issue><spage>59</spage><epage>72</epage><pages>59-72</pages><issn>1474-7480</issn><eissn>1475-3030</eissn><abstract>We show that if an automorphism of a non-abelian free group $F_n$ is irreducible with irreducible powers, it acts on the boundary of Culler–Vogtmann’s outer space with north–south dynamics: there are two fixed points, one attracting and one repelling, and orbits accumulate only on these points. The main new tool we use is the equivariant assignment of a point $Q(X)$ to any end $X\in\partial F_n$, given an action of $F_n$ on an $\bm{R}$-tree $T$ with trivial arc stabilizers; this point $Q(X)$ may be in $T$, or in its metric completion, or in its boundary. AMS 2000 Mathematics subject classification: Primary 20F65; 20E05; 20E08</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1474748003000033</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1474-7480
ispartof Journal of the Institute of Mathematics of Jussieu, 2003-01, Vol.2 (1), p.59-72
issn 1474-7480
1475-3030
language eng
recordid cdi_proquest_journals_216606681
source Cambridge Journals Online
title IRREDUCIBLE AUTOMORPHISMS OF $F_{n}$ HAVE NORTH–SOUTH DYNAMICS ON COMPACTIFIED OUTER SPACE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IRREDUCIBLE%20AUTOMORPHISMS%20OF%20$F_%7Bn%7D$%20HAVE%20NORTH%E2%80%93SOUTH%20DYNAMICS%20ON%20COMPACTIFIED%20OUTER%20SPACE&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.au=Levitt,%20Gilbert&rft.date=2003-01&rft.volume=2&rft.issue=1&rft.spage=59&rft.epage=72&rft.pages=59-72&rft.issn=1474-7480&rft.eissn=1475-3030&rft_id=info:doi/10.1017/S1474748003000033&rft_dat=%3Cproquest_cross%3E1400928091%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1611-d0c8553069e2a49a24afd42ca45e24be7027a57f323ddef0e47b901d5a0980d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216606681&rft_id=info:pmid/&rft_cupid=10_1017_S1474748003000033&rfr_iscdi=true