Loading…
A characterization of nested canalyzing functions with maximum average sensitivity
Nested canalyzing functions (NCFs) are a class of Boolean functions which are used to model certain biological phenomena. We derive a complete characterization of NCFs with the largest average sensitivity, expressed in terms of a simple structural property of the NCF. This characterization provides...
Saved in:
Published in: | Discrete Applied Mathematics 2018-12, Vol.251, p.5-14 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-135f1c4c9ce286cde2c9bb66c2d64f98ade2e2025e8d33bc3319db64d98dfa283 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-135f1c4c9ce286cde2c9bb66c2d64f98ade2e2025e8d33bc3319db64d98dfa283 |
container_end_page | 14 |
container_issue | |
container_start_page | 5 |
container_title | Discrete Applied Mathematics |
container_volume | 251 |
creator | Stearns, Richard E. Rosenkrantz, Daniel J. Ravi, S.S. Marathe, Madhav V. |
description | Nested canalyzing functions (NCFs) are a class of Boolean functions which are used to model certain biological phenomena. We derive a complete characterization of NCFs with the largest average sensitivity, expressed in terms of a simple structural property of the NCF. This characterization provides an alternate, but elementary, proof of the tight upper bound on the average sensitivity of any NCF established by Klotz et al. (2013). We also utilize the characterization to derive a closed form expression for the number of NCFs that have the largest average sensitivity. |
doi_str_mv | 10.1016/j.dam.2018.05.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2166094711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X18302725</els_id><sourcerecordid>2166094711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-135f1c4c9ce286cde2c9bb66c2d64f98ade2e2025e8d33bc3319db64d98dfa283</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4MoOKd_gG8Bn1tzaZum-DTEXzAQRMG3kCbXLWVtZ9JNt7_ejPns03F33-_xvQ8h18BSYCBu29TqLuUMZMqKlEF-QiYgS56IsoRTMokakXCQn-fkIoSWMQaxm5C3GTVL7bUZ0bu9Ht3Q06GhPYYRLTW616vd3vUL2mx6c9gG-u3GJe30j-s2HdVb9HqBNGAf3Oi2btxdkrNGrwJe_dUp-Xh8eL9_TuavTy_3s3liMiHHBLKiAZObyiCXwljkpqprIQy3Im8qqeMEOeMFSptltckyqGwtcltJ22gusym5Od5d--FrEwOrdtj4GDgoHr9lVV4CRBUcVcYPIXhs1Nq7TvudAqYO6FSrIjp1QKdYoSK66Lk7ejDG3zr0KhiHvUHrPJpR2cH94_4FGh94dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166094711</pqid></control><display><type>article</type><title>A characterization of nested canalyzing functions with maximum average sensitivity</title><source>ScienceDirect Journals</source><creator>Stearns, Richard E. ; Rosenkrantz, Daniel J. ; Ravi, S.S. ; Marathe, Madhav V.</creator><creatorcontrib>Stearns, Richard E. ; Rosenkrantz, Daniel J. ; Ravi, S.S. ; Marathe, Madhav V.</creatorcontrib><description>Nested canalyzing functions (NCFs) are a class of Boolean functions which are used to model certain biological phenomena. We derive a complete characterization of NCFs with the largest average sensitivity, expressed in terms of a simple structural property of the NCF. This characterization provides an alternate, but elementary, proof of the tight upper bound on the average sensitivity of any NCF established by Klotz et al. (2013). We also utilize the characterization to derive a closed form expression for the number of NCFs that have the largest average sensitivity.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2018.05.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boolean algebra ; Boolean functions ; Characterization ; Combinatorics ; Counting ; Maximum average sensitivity ; Maximum likelihood method ; Nested canalyzing functions ; Sensitivity ; Upper bounds</subject><ispartof>Discrete Applied Mathematics, 2018-12, Vol.251, p.5-14</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 31, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-135f1c4c9ce286cde2c9bb66c2d64f98ade2e2025e8d33bc3319db64d98dfa283</citedby><cites>FETCH-LOGICAL-c368t-135f1c4c9ce286cde2c9bb66c2d64f98ade2e2025e8d33bc3319db64d98dfa283</cites><orcidid>0000-0002-0893-4364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Stearns, Richard E.</creatorcontrib><creatorcontrib>Rosenkrantz, Daniel J.</creatorcontrib><creatorcontrib>Ravi, S.S.</creatorcontrib><creatorcontrib>Marathe, Madhav V.</creatorcontrib><title>A characterization of nested canalyzing functions with maximum average sensitivity</title><title>Discrete Applied Mathematics</title><description>Nested canalyzing functions (NCFs) are a class of Boolean functions which are used to model certain biological phenomena. We derive a complete characterization of NCFs with the largest average sensitivity, expressed in terms of a simple structural property of the NCF. This characterization provides an alternate, but elementary, proof of the tight upper bound on the average sensitivity of any NCF established by Klotz et al. (2013). We also utilize the characterization to derive a closed form expression for the number of NCFs that have the largest average sensitivity.</description><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Characterization</subject><subject>Combinatorics</subject><subject>Counting</subject><subject>Maximum average sensitivity</subject><subject>Maximum likelihood method</subject><subject>Nested canalyzing functions</subject><subject>Sensitivity</subject><subject>Upper bounds</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kN9LwzAQx4MoOKd_gG8Bn1tzaZum-DTEXzAQRMG3kCbXLWVtZ9JNt7_ejPns03F33-_xvQ8h18BSYCBu29TqLuUMZMqKlEF-QiYgS56IsoRTMokakXCQn-fkIoSWMQaxm5C3GTVL7bUZ0bu9Ht3Q06GhPYYRLTW616vd3vUL2mx6c9gG-u3GJe30j-s2HdVb9HqBNGAf3Oi2btxdkrNGrwJe_dUp-Xh8eL9_TuavTy_3s3liMiHHBLKiAZObyiCXwljkpqprIQy3Im8qqeMEOeMFSptltckyqGwtcltJ22gusym5Od5d--FrEwOrdtj4GDgoHr9lVV4CRBUcVcYPIXhs1Nq7TvudAqYO6FSrIjp1QKdYoSK66Lk7ejDG3zr0KhiHvUHrPJpR2cH94_4FGh94dw</recordid><startdate>20181231</startdate><enddate>20181231</enddate><creator>Stearns, Richard E.</creator><creator>Rosenkrantz, Daniel J.</creator><creator>Ravi, S.S.</creator><creator>Marathe, Madhav V.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0893-4364</orcidid></search><sort><creationdate>20181231</creationdate><title>A characterization of nested canalyzing functions with maximum average sensitivity</title><author>Stearns, Richard E. ; Rosenkrantz, Daniel J. ; Ravi, S.S. ; Marathe, Madhav V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-135f1c4c9ce286cde2c9bb66c2d64f98ade2e2025e8d33bc3319db64d98dfa283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Characterization</topic><topic>Combinatorics</topic><topic>Counting</topic><topic>Maximum average sensitivity</topic><topic>Maximum likelihood method</topic><topic>Nested canalyzing functions</topic><topic>Sensitivity</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stearns, Richard E.</creatorcontrib><creatorcontrib>Rosenkrantz, Daniel J.</creatorcontrib><creatorcontrib>Ravi, S.S.</creatorcontrib><creatorcontrib>Marathe, Madhav V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stearns, Richard E.</au><au>Rosenkrantz, Daniel J.</au><au>Ravi, S.S.</au><au>Marathe, Madhav V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A characterization of nested canalyzing functions with maximum average sensitivity</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2018-12-31</date><risdate>2018</risdate><volume>251</volume><spage>5</spage><epage>14</epage><pages>5-14</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Nested canalyzing functions (NCFs) are a class of Boolean functions which are used to model certain biological phenomena. We derive a complete characterization of NCFs with the largest average sensitivity, expressed in terms of a simple structural property of the NCF. This characterization provides an alternate, but elementary, proof of the tight upper bound on the average sensitivity of any NCF established by Klotz et al. (2013). We also utilize the characterization to derive a closed form expression for the number of NCFs that have the largest average sensitivity.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2018.05.014</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0893-4364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2018-12, Vol.251, p.5-14 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2166094711 |
source | ScienceDirect Journals |
subjects | Boolean algebra Boolean functions Characterization Combinatorics Counting Maximum average sensitivity Maximum likelihood method Nested canalyzing functions Sensitivity Upper bounds |
title | A characterization of nested canalyzing functions with maximum average sensitivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20characterization%20of%20nested%20canalyzing%20functions%20with%20maximum%20average%20sensitivity&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Stearns,%20Richard%20E.&rft.date=2018-12-31&rft.volume=251&rft.spage=5&rft.epage=14&rft.pages=5-14&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2018.05.014&rft_dat=%3Cproquest_cross%3E2166094711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-135f1c4c9ce286cde2c9bb66c2d64f98ade2e2025e8d33bc3319db64d98dfa283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2166094711&rft_id=info:pmid/&rfr_iscdi=true |