Loading…
Manifestly Dual-Conformal Loop Integration
Local, manifestly dual-conformally invariant loop integrands are now known for all finite quantities associated with observables in planar, maximally supersymmetric Yang-Mills theory through three loops. These representations, however, are not infrared-finite term by term and therefore require regul...
Saved in:
Published in: | arXiv.org 2019-04 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bourjaily, Jacob L Dulat, Falko Panzer, Erik |
description | Local, manifestly dual-conformally invariant loop integrands are now known for all finite quantities associated with observables in planar, maximally supersymmetric Yang-Mills theory through three loops. These representations, however, are not infrared-finite term by term and therefore require regularization; and even using a regulator consistent with dual-conformal invariance, ordinary methods of loop integration would naively obscure this symmetry. In this work, we show how any planar loop integral through at least two loops can be systematically regulated and evaluated directly in terms of strictly finite, manifestly dual-conformal Feynman-parameter integrals. We apply these methods to the case of the two-loop ratio and remainder functions for six particles, reproducing the known results in terms of individually regulated local loop integrals, and we comment on some of the novelties that arise for this regularization scheme not previously seen at one loop. |
doi_str_mv | 10.48550/arxiv.1901.02887 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2166275396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2166275396</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-53838f3d75d423824978d646c9f67f1997b81feb518d4dd5d0e1b6ad8684d3383</originalsourceid><addsrcrecordid>eNotjs1KxDAYRYMgzDDOA8yu4E5ITb78fVlK_RuouJn9kJpEOtRkTFvRt7egq7s651xCdpzVEpVit6589181t4zXDBDNBVmDEJyiBFiR7TieGGOgDSgl1uTmxaU-hnEafqr72Q20ySnm8uGGqs35XO3TFN6Lm_qcrshldMMYtv-7IYfHh0PzTNvXp31z11KnQFMlUGAU3igvQSBIa9Brqd9s1CZya02HPIZOcfTSe-VZ4J12HjVKLxZ4Q67_tOeSP-fl2fGU55KW4hG41mCUsFr8AvOEQfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166275396</pqid></control><display><type>article</type><title>Manifestly Dual-Conformal Loop Integration</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bourjaily, Jacob L ; Dulat, Falko ; Panzer, Erik</creator><creatorcontrib>Bourjaily, Jacob L ; Dulat, Falko ; Panzer, Erik</creatorcontrib><description>Local, manifestly dual-conformally invariant loop integrands are now known for all finite quantities associated with observables in planar, maximally supersymmetric Yang-Mills theory through three loops. These representations, however, are not infrared-finite term by term and therefore require regularization; and even using a regulator consistent with dual-conformal invariance, ordinary methods of loop integration would naively obscure this symmetry. In this work, we show how any planar loop integral through at least two loops can be systematically regulated and evaluated directly in terms of strictly finite, manifestly dual-conformal Feynman-parameter integrals. We apply these methods to the case of the two-loop ratio and remainder functions for six particles, reproducing the known results in terms of individually regulated local loop integrals, and we comment on some of the novelties that arise for this regularization scheme not previously seen at one loop.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1901.02887</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Consumer goods ; Integrals ; Local loop ; Regularization ; Supersymmetry ; Yang-Mills theory</subject><ispartof>arXiv.org, 2019-04</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2166275396?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Bourjaily, Jacob L</creatorcontrib><creatorcontrib>Dulat, Falko</creatorcontrib><creatorcontrib>Panzer, Erik</creatorcontrib><title>Manifestly Dual-Conformal Loop Integration</title><title>arXiv.org</title><description>Local, manifestly dual-conformally invariant loop integrands are now known for all finite quantities associated with observables in planar, maximally supersymmetric Yang-Mills theory through three loops. These representations, however, are not infrared-finite term by term and therefore require regularization; and even using a regulator consistent with dual-conformal invariance, ordinary methods of loop integration would naively obscure this symmetry. In this work, we show how any planar loop integral through at least two loops can be systematically regulated and evaluated directly in terms of strictly finite, manifestly dual-conformal Feynman-parameter integrals. We apply these methods to the case of the two-loop ratio and remainder functions for six particles, reproducing the known results in terms of individually regulated local loop integrals, and we comment on some of the novelties that arise for this regularization scheme not previously seen at one loop.</description><subject>Consumer goods</subject><subject>Integrals</subject><subject>Local loop</subject><subject>Regularization</subject><subject>Supersymmetry</subject><subject>Yang-Mills theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjs1KxDAYRYMgzDDOA8yu4E5ITb78fVlK_RuouJn9kJpEOtRkTFvRt7egq7s651xCdpzVEpVit6589181t4zXDBDNBVmDEJyiBFiR7TieGGOgDSgl1uTmxaU-hnEafqr72Q20ySnm8uGGqs35XO3TFN6Lm_qcrshldMMYtv-7IYfHh0PzTNvXp31z11KnQFMlUGAU3igvQSBIa9Brqd9s1CZya02HPIZOcfTSe-VZ4J12HjVKLxZ4Q67_tOeSP-fl2fGU55KW4hG41mCUsFr8AvOEQfA</recordid><startdate>20190409</startdate><enddate>20190409</enddate><creator>Bourjaily, Jacob L</creator><creator>Dulat, Falko</creator><creator>Panzer, Erik</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190409</creationdate><title>Manifestly Dual-Conformal Loop Integration</title><author>Bourjaily, Jacob L ; Dulat, Falko ; Panzer, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-53838f3d75d423824978d646c9f67f1997b81feb518d4dd5d0e1b6ad8684d3383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Consumer goods</topic><topic>Integrals</topic><topic>Local loop</topic><topic>Regularization</topic><topic>Supersymmetry</topic><topic>Yang-Mills theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Bourjaily, Jacob L</creatorcontrib><creatorcontrib>Dulat, Falko</creatorcontrib><creatorcontrib>Panzer, Erik</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourjaily, Jacob L</au><au>Dulat, Falko</au><au>Panzer, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manifestly Dual-Conformal Loop Integration</atitle><jtitle>arXiv.org</jtitle><date>2019-04-09</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Local, manifestly dual-conformally invariant loop integrands are now known for all finite quantities associated with observables in planar, maximally supersymmetric Yang-Mills theory through three loops. These representations, however, are not infrared-finite term by term and therefore require regularization; and even using a regulator consistent with dual-conformal invariance, ordinary methods of loop integration would naively obscure this symmetry. In this work, we show how any planar loop integral through at least two loops can be systematically regulated and evaluated directly in terms of strictly finite, manifestly dual-conformal Feynman-parameter integrals. We apply these methods to the case of the two-loop ratio and remainder functions for six particles, reproducing the known results in terms of individually regulated local loop integrals, and we comment on some of the novelties that arise for this regularization scheme not previously seen at one loop.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1901.02887</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2166275396 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Consumer goods Integrals Local loop Regularization Supersymmetry Yang-Mills theory |
title | Manifestly Dual-Conformal Loop Integration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manifestly%20Dual-Conformal%20Loop%20Integration&rft.jtitle=arXiv.org&rft.au=Bourjaily,%20Jacob%20L&rft.date=2019-04-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1901.02887&rft_dat=%3Cproquest%3E2166275396%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-53838f3d75d423824978d646c9f67f1997b81feb518d4dd5d0e1b6ad8684d3383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2166275396&rft_id=info:pmid/&rfr_iscdi=true |