Loading…

Manifestly Dual-Conformal Loop Integration

Local, manifestly dual-conformally invariant loop integrands are now known for all finite quantities associated with observables in planar, maximally supersymmetric Yang-Mills theory through three loops. These representations, however, are not infrared-finite term by term and therefore require regul...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-04
Main Authors: Bourjaily, Jacob L, Dulat, Falko, Panzer, Erik
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bourjaily, Jacob L
Dulat, Falko
Panzer, Erik
description Local, manifestly dual-conformally invariant loop integrands are now known for all finite quantities associated with observables in planar, maximally supersymmetric Yang-Mills theory through three loops. These representations, however, are not infrared-finite term by term and therefore require regularization; and even using a regulator consistent with dual-conformal invariance, ordinary methods of loop integration would naively obscure this symmetry. In this work, we show how any planar loop integral through at least two loops can be systematically regulated and evaluated directly in terms of strictly finite, manifestly dual-conformal Feynman-parameter integrals. We apply these methods to the case of the two-loop ratio and remainder functions for six particles, reproducing the known results in terms of individually regulated local loop integrals, and we comment on some of the novelties that arise for this regularization scheme not previously seen at one loop.
doi_str_mv 10.48550/arxiv.1901.02887
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2166275396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2166275396</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-53838f3d75d423824978d646c9f67f1997b81feb518d4dd5d0e1b6ad8684d3383</originalsourceid><addsrcrecordid>eNotjs1KxDAYRYMgzDDOA8yu4E5ITb78fVlK_RuouJn9kJpEOtRkTFvRt7egq7s651xCdpzVEpVit6589181t4zXDBDNBVmDEJyiBFiR7TieGGOgDSgl1uTmxaU-hnEafqr72Q20ySnm8uGGqs35XO3TFN6Lm_qcrshldMMYtv-7IYfHh0PzTNvXp31z11KnQFMlUGAU3igvQSBIa9Brqd9s1CZya02HPIZOcfTSe-VZ4J12HjVKLxZ4Q67_tOeSP-fl2fGU55KW4hG41mCUsFr8AvOEQfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166275396</pqid></control><display><type>article</type><title>Manifestly Dual-Conformal Loop Integration</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bourjaily, Jacob L ; Dulat, Falko ; Panzer, Erik</creator><creatorcontrib>Bourjaily, Jacob L ; Dulat, Falko ; Panzer, Erik</creatorcontrib><description>Local, manifestly dual-conformally invariant loop integrands are now known for all finite quantities associated with observables in planar, maximally supersymmetric Yang-Mills theory through three loops. These representations, however, are not infrared-finite term by term and therefore require regularization; and even using a regulator consistent with dual-conformal invariance, ordinary methods of loop integration would naively obscure this symmetry. In this work, we show how any planar loop integral through at least two loops can be systematically regulated and evaluated directly in terms of strictly finite, manifestly dual-conformal Feynman-parameter integrals. We apply these methods to the case of the two-loop ratio and remainder functions for six particles, reproducing the known results in terms of individually regulated local loop integrals, and we comment on some of the novelties that arise for this regularization scheme not previously seen at one loop.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1901.02887</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Consumer goods ; Integrals ; Local loop ; Regularization ; Supersymmetry ; Yang-Mills theory</subject><ispartof>arXiv.org, 2019-04</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2166275396?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Bourjaily, Jacob L</creatorcontrib><creatorcontrib>Dulat, Falko</creatorcontrib><creatorcontrib>Panzer, Erik</creatorcontrib><title>Manifestly Dual-Conformal Loop Integration</title><title>arXiv.org</title><description>Local, manifestly dual-conformally invariant loop integrands are now known for all finite quantities associated with observables in planar, maximally supersymmetric Yang-Mills theory through three loops. These representations, however, are not infrared-finite term by term and therefore require regularization; and even using a regulator consistent with dual-conformal invariance, ordinary methods of loop integration would naively obscure this symmetry. In this work, we show how any planar loop integral through at least two loops can be systematically regulated and evaluated directly in terms of strictly finite, manifestly dual-conformal Feynman-parameter integrals. We apply these methods to the case of the two-loop ratio and remainder functions for six particles, reproducing the known results in terms of individually regulated local loop integrals, and we comment on some of the novelties that arise for this regularization scheme not previously seen at one loop.</description><subject>Consumer goods</subject><subject>Integrals</subject><subject>Local loop</subject><subject>Regularization</subject><subject>Supersymmetry</subject><subject>Yang-Mills theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjs1KxDAYRYMgzDDOA8yu4E5ITb78fVlK_RuouJn9kJpEOtRkTFvRt7egq7s651xCdpzVEpVit6589181t4zXDBDNBVmDEJyiBFiR7TieGGOgDSgl1uTmxaU-hnEafqr72Q20ySnm8uGGqs35XO3TFN6Lm_qcrshldMMYtv-7IYfHh0PzTNvXp31z11KnQFMlUGAU3igvQSBIa9Brqd9s1CZya02HPIZOcfTSe-VZ4J12HjVKLxZ4Q67_tOeSP-fl2fGU55KW4hG41mCUsFr8AvOEQfA</recordid><startdate>20190409</startdate><enddate>20190409</enddate><creator>Bourjaily, Jacob L</creator><creator>Dulat, Falko</creator><creator>Panzer, Erik</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190409</creationdate><title>Manifestly Dual-Conformal Loop Integration</title><author>Bourjaily, Jacob L ; Dulat, Falko ; Panzer, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-53838f3d75d423824978d646c9f67f1997b81feb518d4dd5d0e1b6ad8684d3383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Consumer goods</topic><topic>Integrals</topic><topic>Local loop</topic><topic>Regularization</topic><topic>Supersymmetry</topic><topic>Yang-Mills theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Bourjaily, Jacob L</creatorcontrib><creatorcontrib>Dulat, Falko</creatorcontrib><creatorcontrib>Panzer, Erik</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourjaily, Jacob L</au><au>Dulat, Falko</au><au>Panzer, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manifestly Dual-Conformal Loop Integration</atitle><jtitle>arXiv.org</jtitle><date>2019-04-09</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Local, manifestly dual-conformally invariant loop integrands are now known for all finite quantities associated with observables in planar, maximally supersymmetric Yang-Mills theory through three loops. These representations, however, are not infrared-finite term by term and therefore require regularization; and even using a regulator consistent with dual-conformal invariance, ordinary methods of loop integration would naively obscure this symmetry. In this work, we show how any planar loop integral through at least two loops can be systematically regulated and evaluated directly in terms of strictly finite, manifestly dual-conformal Feynman-parameter integrals. We apply these methods to the case of the two-loop ratio and remainder functions for six particles, reproducing the known results in terms of individually regulated local loop integrals, and we comment on some of the novelties that arise for this regularization scheme not previously seen at one loop.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1901.02887</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2166275396
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Consumer goods
Integrals
Local loop
Regularization
Supersymmetry
Yang-Mills theory
title Manifestly Dual-Conformal Loop Integration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manifestly%20Dual-Conformal%20Loop%20Integration&rft.jtitle=arXiv.org&rft.au=Bourjaily,%20Jacob%20L&rft.date=2019-04-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1901.02887&rft_dat=%3Cproquest%3E2166275396%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-53838f3d75d423824978d646c9f67f1997b81feb518d4dd5d0e1b6ad8684d3383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2166275396&rft_id=info:pmid/&rfr_iscdi=true